5. Lineaire verbanden.

Save this PDF as:
Maat: px
Weergave met pagina beginnen:

Download "5. Lineaire verbanden."

Transcriptie

1 Uitwerkingen opgaven hoofdstuk 5 versie Lineaire veranden. Opgave 5.1 Recht evenredig lineair verand F (N) Uitrekking van een veer a = F 9 k = 37,5 x 4 = F 9 N N k = = = 37,5 x 4 cm cm 3 1, 1,, 3, x (cm) c de etekenis van de eenheid: als de veer 1 cm wordt uitgerekt is daarvoor een kracht nodig van 37,5 N d e F= 37, 5 x met x de uitrekking in cm = F 6 N N k 5 x = 4 cm = cm F(N) Uitrekking van een veer f g Er is minder kracht nodig dus de veer is slapper. Een grote/kleine k etekent een sterke (stugge) veer , 1,, 3, x (cm) Opgave 5. Benzine Kosten (euro) Kosten van enzine a De kostprijs van een epaalde hoeveelheid enzine. K 3,4 euro euro hellingsge tal= = = 1,6 aantal L L c De prijs per liter enzine. d K = 1,6 aantal e als de enzine duurder wordt gaat de lijn steiler/minder steil lopen. 1 5, 1,, 3, -5 aantal(l) Opgave 5.3 Vullen van een tank 1 V(L) m(kg),,5 6, 7,5 1 uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

2 m a hellingsge tal= = V 7,5kg 6,L = 1,5 zie a c de natuurkundige etekenis van de helling is de dichtheid van de vloeistof d m = 1,5 V e de grafiek zou 5 kg omhoog schuiven f m = 1,5 V + 5 kg L Opgave 5.4 Vullen van een tank 4,5 m h 3, m 3 L/s a Rechte lijn door, V = πd h = π 3 4,5 = 31,89 m = 3189L L c t = = 16s = 17,7 min 3L/s d in 16 s stijgt het niveau 4,5 m dus het hellingsgetal van de h,t-grafiek 4,5m m is = h =,54 t 17,7 min = min e h =,54 t met t inmin f g De tank loopt over en de hoogte verandert niet meer. uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

3 h 3,8 h h =,54 t t= = = 15, min.,54,54 Opgave 5.5 Wiskundige grafiek y 8 a a= = = x 4 y= x c d Opgave 5.6 e Een negatief hellingsgetal etekent dat er een dalende lijn is. Als x met 1 toeneemt neemt y met 1,5 af. Spectrofotometer E spectrofotometer 1,,73 a punt 1: hellingsgetal= =, 73,1,51 punt : hellingsgetal= =,55, De grootheden zijn wel/niet recht evenredig. c De oorzaak hiervan is dat de lijn niet door de oorsprong loopt.,5,,,1,,3,4 c(mol/l) 3 uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

4 Voor een onekende vloeistof wordt een extinctie gemeten van,465. d aflezen c =,18 mol/l e de lijn stijgt,51,73 =,37 per,1 concentratieverandering, dat is,37 per 1 mol/l de lijn ligt ongeveer,4 te hoog, dus de formule wordt: E =,37 c +,4 invullen,465 =,37 c +,4 en oplossen geeft: c =,18 mol/l Opgave 5.7 Een auto met constante snelheid a Vul de volgende tael verder in: t (s) s A (t) (m) s A (t) (m) s A (t) (m) s A () = s A (1) = s A () = s A (4) = s A (6) = 11 t + 15 t + 15 t Bij het vraagteken staat - c Zie d d s (m) t (s) e De eenheid van het hellingsgetal is m/s. f Dit stelt de snelheid voor. 48 g 68= 15t+ 15t = 48 t= = 3, s 15 h Zie d 4 uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

5 Opgave 5.8 Twee auto s met constante snelheid 1 a Zie g s B (t) = 6 1t c ijv. s B (5) = = 1 m, dit klopt d Zie g e ongeveer t = 4,4 s 43 f 17= 6 1t 43= 1t t= = 4,3 s 1 g Snijpunt v.d. lijnen s (m) t (s) h + 15t = 6 1t 5t = 4 t= = 1,6s 5 i s B (1,6) = 6 1 1,6 = 44 m j Klopt. 5 uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

6 Opgave 5.9 Twee auto s met constante snelheid a s (m) t (s) t (6 1 t) = + 15t 6+ 1t= 6 5t = 6 t= =,4s t (+ 15 t) = 6 1t 15t = 5t = t= =,8 s 5 Opgave 5.1 Wiskundige grafiek 1 a x y y/x , y 8 a = = = x 6 c asafsnijding = 4 d y(x) = x uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

7 1,37 e 6,37= x 4 1,37x= x x= = 5,185 en dat klopt f wiskundige grafiek 8, y 7, 6, 5, Δy 4, 3,, 1, Δx, , x -, -3, -4, -5, -6, -7, -8, g 8 x+ 4= x 4 5x= 8 x= = 1,6 5 y= 1,6 4=,8 snijpunt: (1,6;,8) Opgave 5.11 Wiskundige grafieken a heeft een waarde tussen en+ en er zijn dus oneindig veel grafieken te tekenen voor y = -1,5x + 5= 1,5 ( 1) + 5= 1,5+ 3,5= = 3,5 c oneindig veel en ze lopen allemaal door het punt y =,3 d 5 = a ( 1),3 5= a,3 7,3= a a= 7,3 Opgave 5.1 Wiskundige grafieken 3 a y=,5x y+ =,5x,5x= y+ y+ y x= = + = 4y+ 8,5,5,5 x= 4y+ 8 x+,4y= 5 x= 5,4y 5,4y x= = 5,4y =,5,y x+,4y= 5,4y= 5 x 5 x y= =,4 5,4 x = 1,5 5x,4 7 uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

8 Opgave 5.13 Opgave 5.14 Hellingsgetal en asafsnijding epalen a s 65 ( 4) 89 m m a= = = =, t 5,6 1, 4,4 s s s=,t+ 65=, 5,6+ = 48, m s=,t 48, c Ja dat moet hetzelfde opleveren en dat kun je dus als controle geruiken. d Bereken wanneer de auto op 5 m rechts van de oorsprong is. 73, 5=, t 48,, t = 73, t= = 13,5 s, Spectrofotometer a Zie grafiek, 6,1,14 hellingsgetal a= = =, 389 6,4,8 3,6 Bereken ook de asafsnijding. E=, 389c+,6=,389 6,4+ =,11 c De asafsnijding is de concentratie van de lanco. d E =, 389c+, 11 e, g,33=,389c+,11,389c=, c= = 5,7, 389 L Dat klopt met de grafiek 8 uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

9 Opgave 5.15 Lengte en gewicht a a =,5516 kg/cm; = 5 kg De etekenis van het hellingsgetal is hoeveel je zwaarder wordt als je lengte 1 cm toeneemt. Als de lengte 1 cm toeneemt neemt het gewicht met,5516 kg toe c De asafsnijding geeft aan hoeveel je kg je weegt als je lengte cm i Je zou dus een negatief gewicht moeten heen ij een lengte van cm. Het snijpunt met de verticale as hoort hier ij een lengte van 14 cm en niet ij nul. Dit is dus niet de asafsnijding! d m=,5516 l 7,649=, ,649= 16,4 kg e Dit klopt niet helemaal, dus het verloop is niet lineair over het geied onder 14 cm. Opgave 5.16 Kosten en aten a a =,5 /lik en = 4 K( q) =,5q+ 4 q is het aantal likken c R( q) = 8,5q d Dat punt geeft aan wanneer hij winst egint te maken e 4,5q+ 4= 8, 5q 5, 75q= 4 q= = 69,56= 7 likken 5,75 R( q) = 8,5 q R(7) = 8,5 7= 577,5 Opgave 5.17 Fitness aonnement Bij fitnesscentrum Sportief kun je kiezen uit twee aonnementen. A: Een vast edrag van 35,- en 1,5 per uur. B: Een vast edrag van 5,- en 1, per uur. a K ( t) = 1,5q+ 35 A c A d KB( t) = 1,q ,5q+ 35= 1, q+ 5,3q= 15 q= = 5 uur,3 K (5) = 1, = 11 K ( t) = K ( t) + 1 A B 1,5q+ 35= 1, q ,3q= 115 q= = 383,3 uur,3 9 uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

10 Opgave 5.18 Geleidaarheid a Teken de grafiek: c a = G 686 = = =,596 mg L μs cm c=,596 G+ 36=, = 4, 44 c=,596 G+ 4, 44 c Hij is praktisch recht evenredig omdat de asafsnijding 4,44 op een schaal van tot 7 ijna nul is. mg d c=, ,44= 541 L e Omdat zouten uit ionen estaan dus uit geladen deeltjes, die de stroom geleiden. Hoe meer geladen deeltjes des te groter de geleidaarheid. 1 uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

11 Extra oefeningen Opgave 5.19 Leeftijd en gemiddelde lengte van peuters (handig met Excel) a Met Excel gemaakt 84 Verand tussen massa en lengte l(cm) y =,635x + 64, l (maanden) Zie grafiek. c Een peuter groeit volgens dit model,635 cm per maand. d De asafsnijding 64, 98 cm is de lengte op een leeftijd van maanden. e Het lineair model klopt hier niet mee. De grafiek tussen en 18 maanden egint steiler en wordt dan geleidelijk minder steil. Kinderen groeien het eerste jaar het hardst. f h=, 635 l+ 64,98 h=,635 (1 1) + 64,98= 5cm De grafiek zal nog minder steil worden. Opgave 5. Meer oefeningen a y =,x, 3 a =, en = -,3 Snijpunt x-as, dan y =,3 =,x,3,x=,3 x= = 11,5, snijpunt x as:(11,5;) 6x 4 6 x = 4 y y= 6x 4 y= y=x+ a = -3 en = 11 uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

12 3 =x+ 3x= x= = 1,5 snijpuntx as: (1,5; ) c p( t) =,7 1 t+, 1 a=,7 1 en =, 1 =,7 1 t+, 1, 1 t=,7 1 = 37 =,54 d V( T) = 1, 1 = 1, T + 3 a= 1, 1 T + 3 T = 1, 1 3 ml =,5 C C en = 3 ml e V,T (96; 1,6) en (13, 45,) met V in ml en T in C T a= V (45, 1,6) = = (13 96) T =,874 V + 1,6=, = 1,6,874 96= 6,3 T =,874 V 6,3 t (6) a= = = m (16,4 1,3) t= 7,3 m 6, 3,6 =, ,1 = 7,3 s kg C ml f m,t (1,3; 3) en (16,4; 6) met m in kg en t in s t= 7,3 m+ 3= 7,3 1,3+ = 3 7,3 1,3= 6,s C 1 uitwerkingen opgaven lineaire veranden 15 Vervoort Boeken

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Blok - Vaardigheden Extra oefening - Basis B-a De formules a = en s= t 8 zijn lineaire formules. Bij tael A hoort een lineair verand omdat de toename in de onderste rij steeds + is. Bij tael B hoort geen

Nadere informatie

extra oefeningen HOOFDSTUK 4 VMBO 4

extra oefeningen HOOFDSTUK 4 VMBO 4 extra oefeningen HOOFDSTUK 4 VMBO 4 1. a. Teken in één assenstelsel de grafieken bij de formules y = 4x - 3 en y = 7 - x b. Bereken de coördinaten van het snijpunt c. Teken in hetzelfde assenstelsel de

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Het edrijf rekent 35 euro voorrijkosten. 3t+ 35 = k Als de monteur 7 uur ezig is kost het 3 7 + 35 = 75 euro. d 3t + 35 = 7 3t = 3 t = 5, De monteur is,5 uur of uur en kwartier ezig geweest.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Meer variaelen ladzijde V-a Omdat het water met onstante snelheid uit de ak stroomt en de ak ilindervormig is, is de afname van de hoogte van de waterstand per tijdseenheid onstant. De hoogte

Nadere informatie

Wisnet-HBO update nov. 2008

Wisnet-HBO update nov. 2008 Lineair verband Lineair verband Wisnet-HBO update nov. 28 Twee grootheden hebben een lineair verband als je in een grafiek de ene grootheid tegen de ander uitzet en je ziet een rechte lijn. Bijvoorbeeld:

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt kg lengte in m gewicht in kg 7 9 c d gewicht in kg lengte in m m weegt kg dus m weegt kg meter e startgetal hellingsgetal V-a y + Dus ( ) y

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 4 Voorkennis V-a k = 8t+ 4 Het edrijf rekent 4 euro voorrijkosten. De shoorsteenveger werkt 4 minuten en dat zijn kwartieren. Als de shoorsteenveger 4 minuten ezig is geweest, kost het 8 + 4= 99 euro.

Nadere informatie

Keuzemenu - Wiskunde en economie

Keuzemenu - Wiskunde en economie 1a a Keuzemenu - Wiskunde en eonomie ladzijde 6 TK( 00) GTK( 00) = = 300 = 71 euro per ezoeker 00 00 TK( 600) 800 = = 71, 33 euro per ezoeker 600 600 TK( 800) 9 00 GTK( 800) = = = 7 euro per ezoeker 800

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

Hoofdstuk 8 - De afgeleide

Hoofdstuk 8 - De afgeleide Voorkennis: Lineaire functies ladzijde V-a meter snoer weegt,, kg lengte in m gewicht in kg,,, 7, 9,, gewicht in kg lengte in m c m weegt kg dus m weegt, kg,, d, meter, e startgetal, hellingsgetal, V-a

Nadere informatie

29 Parabolen en hyperbolen

29 Parabolen en hyperbolen 39 0 1 9 Paraolen en hyperolen 6 5 5 6 3 3 1 5 h = 0,065 0 = 100 meter + (5 ) = 5 6,5 ; 5 ; 56,5 ; 100 meter ( 3 9 ) + (3 ) = 8 16,96.. afstand PE < afstand P tot de x-as Nee! y (alleen als y > 0) 0,065

Nadere informatie

Hoofdstuk 4 Machtsverbanden

Hoofdstuk 4 Machtsverbanden Opstap Derdemachten O-1a I r r r 1 De inhoud van een kuus met r is 1 cm 3. Als I 7 geldt r 3 want 3 3 7. Een kuus met I 7 heeft een rie van 3 cm. c r in cm 1 3 d I in cm 3 1 7 6 1 l in cm 3 9 7 6 3 - -1-3

Nadere informatie

Hoofdstuk 4 Vergelijkingen. Kern 1 Numeriek oplossen. Netwerk 4 HAVO B uitwerkingen, Hoofdstuk 4, Vergelijkingen 1

Hoofdstuk 4 Vergelijkingen. Kern 1 Numeriek oplossen. Netwerk 4 HAVO B uitwerkingen, Hoofdstuk 4, Vergelijkingen 1 Netwerk HAVO B uitwerkingen, Hoofdstuk, Vergelijkingen Hoofdstuk Vergelijkingen Kern Numeriek oplossen a Teken Y = + 0.* (X) en Y = + 0.00 * X op WINDOW [0,00] [0, 0]. b X = 6.5 en Y =.78. Dus na 6,5 dag

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties Hoofdstuk Mahtsfunties ladzijde 9 Va Voor elke 0 geldt: > 0. Dus de grafiek van f ligt oven de as. 9 of De yas is symmetrieas. d Het punt (0 0). Va y 0 ( ) 0 0 of 0 0 of 0 of of De oördinaten van de snijpunten

Nadere informatie

Hoofdstuk 2 Functies en de GRM. Kern 1 Functies met de GRM. Netwerk Havo B uitwerkingen Hoofdstuk 2, Functies en de GRM 1. 1 a. b Na ongeveer 6 dagen.

Hoofdstuk 2 Functies en de GRM. Kern 1 Functies met de GRM. Netwerk Havo B uitwerkingen Hoofdstuk 2, Functies en de GRM 1. 1 a. b Na ongeveer 6 dagen. Netwerk Havo B uitwerkingen Hoofdstuk, Functies en de GRM Hoofdstuk Functies en de GRM Kern Functies met de GRM a H (dm) 5 Na ongeveer 6 dagen. 6 8 0 t a De functie heeft geen functiewaarde voor X < 0.

Nadere informatie

Samenvatting snelheden en 6.1 6.3

Samenvatting snelheden en 6.1 6.3 Samenvatting snelheden en 6.1 6.3 Boekje snelheden en bewegen Een beweging kan je op verschillende manieren vastleggen: Fotograferen met tussenpozen, elke foto is een gedeelte van een beweging Stroboscopische

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds 4. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten.

Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. Theorie lineair verband Bij alle verbanden geldt dat je, als je een negatief getal in een formule invult, je altijd haakjes om dat getal moet zetten. In het dagelijks leven wordt vaak gebruik gemaakt van

Nadere informatie

F3 Formules: Formule rechte lijn opstellen 1/3

F3 Formules: Formule rechte lijn opstellen 1/3 F3 Formules: Formule rechte lijn opstellen 1/3 Inleiding Bij Module F1 heb je geleerd dat Formule, Verhaal, Tabel, Grafiek en Vergelijking altijd bij elkaar horen. Bij Module F2 heb je geleerd wat een

Nadere informatie

1.1 Lineaire vergelijkingen [1]

1.1 Lineaire vergelijkingen [1] 1.1 Lineaire vergelijkingen [1] Voorbeeld: Los de vergelijking 4x + 3 = 2x + 11 op. Om deze vergelijking op te lossen moet nu een x gevonden worden zodat 4x + 3 gelijk wordt aan 2x + 11. = x kg = 1 kg

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 1

Samenvatting Natuurkunde Hoofdstuk 1 Samenvatting Natuurkunde Hoofdstuk 1 Samenvatting door een scholier 1494 woorden 8 april 2014 7,8 97 keer beoordeeld Vak Methode Natuurkunde Systematische natuurkunde Grootheden en eenheden Kwalitatieve

Nadere informatie

En wat nu als je voorwerpen hebt die niet even groot zijn?

En wat nu als je voorwerpen hebt die niet even groot zijn? Dichtheid Als je van een stalen tentharing en een aluminium tentharing wilt weten welke de grootte massa heeft heb je een balans nodig. Vaak kun je het antwoord ook te weten komen door te voelen welk voorwerp

Nadere informatie

Exact periode 3 Rechte lijn kunde

Exact periode 3 Rechte lijn kunde Exact periode 3 Rechte lijn kunde diktaat exact blok 3 1 6-3-2017 Hoofdstuk1 Wat analisten willen.. 1.1 Een voorbeeld. Standaard1 Standaard2 Standaard3 Standaard4 Monster Standaard1 Standaard2 Standaard3

Nadere informatie

Kern 1 Lineaire functies

Kern 1 Lineaire functies Kern 1 Lineaire functies 1 a V = 10 kw b V = 0,07 100 + = 7 + = 10 c Alle lijnen beginnen bij V =, alleen het hellingsgetal is verschillend. Bij 15 C geldt V = 0,05 I + Bij 1 C geldt V = 0,06 I + Bij C

Nadere informatie

NATUURKUNDE KLAS 5. PROEFWERK H8 JUNI 2010 Gebruik eigen rekenmachine en BINAS toegestaan. Totaal 29 p

NATUURKUNDE KLAS 5. PROEFWERK H8 JUNI 2010 Gebruik eigen rekenmachine en BINAS toegestaan. Totaal 29 p NATUURKUNDE KLAS 5 PROEFWERK H8 JUNI 2010 Gebruik eigen rekenmachine en BINAS toegestaan. Totaal 29 p Opgave 1: alles heeft een richting (8p) Bepaal de richting van de gevraagde grootheden. Licht steeds

Nadere informatie

Hoofdstuk1 Wat analisten willen..

Hoofdstuk1 Wat analisten willen.. Hoofdstuk Wat analisten willen... Een voorbeeld. Standaard Standaard Standaard Standaard Monster Standaard Standaard Standaard Standaard Monster Conc.,,5,,5????? (mol.l - ) Ext.,,,,5,7 Hierboven zie je

Nadere informatie

Havo 4 - Practicumwedstrijd Versnelling van een karretje

Havo 4 - Practicumwedstrijd Versnelling van een karretje Havo 4 - Practicumwedstrijd Versnelling van een karretje Vandaag gaan jullie een natuurkundig experiment doen in een hele andere vorm dan je gewend bent, namelijk in de vorm van een wedstrijd. Leerdoelen

Nadere informatie

Theorie: Het maken van een verslag (Herhaling klas 2)

Theorie: Het maken van een verslag (Herhaling klas 2) Theorie: Het maken van een verslag (Herhaling klas 2) Onderdelen Een verslag van een experiment bestaat uit vier onderdelen: - inleiding: De inleiding is het administratieve deel van je verslag. De onderzoeksvraag

Nadere informatie

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4

Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 Hoofdstuk 1 boek 1 Formules en grafieken havo b klas 4 1. Lineair verband. 1a. na 1 min 36 cm, na min. 3 cm, daling 4 cm per minuut. b. h = 40 4t h in cm en t per minuut b. k: rc = -3 m: rc = 0.5 p: rc

Nadere informatie

Hoofdstuk 4 - Machtsfuncties

Hoofdstuk 4 - Machtsfuncties vwo AC deel Uitwerkingen Moderne wiskunde Hoofdstuk Mahtsfunties ladzijde 9 Va Voor elke 0 geldt: > 0. Dus de grafiek van f ligt oven de as. 9 of De yas is symmetrieas. d Het punt (0 0). Va y 0 ( ) 0 0

Nadere informatie

Massa Volume en Dichtheid. Over Betuwe College 2011 Pagina 1

Massa Volume en Dichtheid. Over Betuwe College 2011 Pagina 1 Massa Volume en Dichtheid Over Betuwe College 2011 Pagina 1 Inhoudsopgave 1 Het volume... 3 1.1 Het volume berekenen.... 3 1.2 Volume 2... 5 1.3 Symbolen en omrekenen... 5 2 Massa... 6 3 Dichtheid... 7

Nadere informatie

Foutenberekeningen Allround-laboranten

Foutenberekeningen Allround-laboranten Allround-laboranten Inhoudsopgave INHOUDSOPGAVE... 2 LEERDOELEN :... 3 1. INLEIDING.... 4 2. DE ABSOLUTE FOUT... 5 3. DE KOW-METHODE... 6 4. DE RELATIEVE FOUT... 6 5. GROOTHEDEN VERMENIGVULDIGEN EN DELEN....

Nadere informatie

Hoofdstuk 9 - Lineair Programmeren Twee variabelen

Hoofdstuk 9 - Lineair Programmeren Twee variabelen Hoofdstuk 9 - Lineair Programmeren Twee variabelen bladzijde a Twee ons bonbons kost, euro. Er blijft,, =, euro over. Doris kan daarvan, = ons drop kopen., b d is het aantal ons gemengde drop (, euro per

Nadere informatie

Stevin havo deel 2 Uitwerkingen hoofdstuk 3 Trillingen ( ) Pagina 1 van 11

Stevin havo deel 2 Uitwerkingen hoofdstuk 3 Trillingen ( ) Pagina 1 van 11 Stevin havo deel Uitwerkingen hoofdstuk 3 Trillingen (-0-03) Pagina van Opgaven 3. Zwaaien en dansen a Ja, de periode is h. a Nee, de draaiing is geen eweging rondom een evenwichtsstand. a 5 T = 3600 =

Nadere informatie

Hoofdstuk 2: Grafieken en formules

Hoofdstuk 2: Grafieken en formules Hoofdstuk 2: Grafieken en formules Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 2: Grafieken en formules Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde

Nadere informatie

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A.

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A. Grootheden en eenheden Kwalitatieve en kwantitatieve waarnemingen Een kwalitatieve waarneming is wanneer je meet zonder bijvoorbeeld een meetlat. Je ziet dat een paard hoger is dan een muis. Een kwantitatieve

Nadere informatie

Een model voor een lift

Een model voor een lift Een model voor een lift 2 de Leergang Wiskunde schooljaar 213/14 2 Inhoudsopgave Achtergrondinformatie... 4 Inleiding... 5 Model 1, oriëntatie... 7 Model 1... 9 Model 2, oriëntatie... 11 Model 2... 13

Nadere informatie

Blok 3 - Vaardigheden

Blok 3 - Vaardigheden B-a Extra oefening - Basis Ja, x en y zijn omgekeerd evenredig. Bij de tael hoort de formule x y = 70 of y = 70 of x = 70. x y Ja, x en y zijn omgekeerd evenredig. Bij de tael hoort de formule x y = 8

Nadere informatie

Verbanden en functies

Verbanden en functies Verbanden en functies 0. voorkennis Stelsels vergelijkingen Je kunt een stelsel van twee lineaire vergelijkingen met twee variabelen oplossen. De oplossing van het stelsel is het snijpunt van twee lijnen.

Nadere informatie

Het opstellen van een lineaire formule.

Het opstellen van een lineaire formule. Het opstellen van een lineaire formule. Gegeven is onderstaande lineaire grafiek (lijn b). Van deze grafiek willen wij de lineaire formule weten. Met deze formule kunnen we gaan rekenen. Je kan geen lineaire

Nadere informatie

Naam van de kracht: Uitleg: Afkorting: Spierkracht De kracht die wordt uitgeoefend door spieren van de mens. F spier

Naam van de kracht: Uitleg: Afkorting: Spierkracht De kracht die wordt uitgeoefend door spieren van de mens. F spier Samenvatting door F. 823 woorden 3 maart 2015 7,4 32 keer beoordeeld Vak NaSk Sport, kracht en beweging 1 Naam van de kracht: Uitleg: Afkorting: Spierkracht De kracht die wordt uitgeoefend door spieren

Nadere informatie

Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1

Lineaire verbanden. 4 HAVO wiskunde A getal en ruimte deel 1 Lineaire verbanden 4 HAVO wiskunde A getal en ruimte deel 0. voorkennis Letterrekenen Regels: a(b + c ) = a b + ac (a + b )c = a c + bc (a + b )(c + d ) = a c + a d + b c + bd Vergelijkingen oplossen Je

Nadere informatie

Om het startgetal te vinden vul je een punt van de lijn in, bijvoorbeeld (2, 8). Dan: 8= dus startgetal 12.

Om het startgetal te vinden vul je een punt van de lijn in, bijvoorbeeld (2, 8). Dan: 8= dus startgetal 12. Blok Vaardigheden bladzijde 8 a l gaat door (0, 8) dus startgetal 8 l gaat door (0, 8) en (8, ), dus 8 naar rechts en omlaag ofwel naar rechts en 0, omlaag. Het hellingsgetal is dan 0, b y- 0, x 8 c Evenwijdig

Nadere informatie

NATUURKUNDE 8 29/04/2011 KLAS 5 INHAALPROEFWERK HOOFDSTUK

NATUURKUNDE 8 29/04/2011 KLAS 5 INHAALPROEFWERK HOOFDSTUK NATUURKUNDE KLAS 5 INHAALPROEFWERK HOOFDSTUK 8 29/04/2011 Deze toets bestaat uit 3 opgaven (32 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Veel succes! Opgave 1: Afbuigen van geladen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a c d V-a Hoofdstuk - Differentiëren Voorkennis: De afgeleide ladzijde Na 5 seconden. De grafiek verandert daar van B in C en het dalen gaat ineens langzamer. De raaklijn gaat ongeveer door de punten

Nadere informatie

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden. 1 Formules gebruiken Verkennen www.math4all.nl MAThADORE-basic HAVO/VWO 4/5/6 VWO wi-b Werken met formules Formules gebruiken Inleiding Verkennen Probeer de vragen bij Verkennen zo goed mogelijk te beantwoorden.

Nadere informatie

Hoofdstuk 6 Matrices toepassen

Hoofdstuk 6 Matrices toepassen Hoofdstuk Matries toepassen Moderne wiskunde e editie vwo D deel Lesliematries ladijde a Van de dieren in de leeftijdsgroep van - jaar komen er, in de leeftijdsgroep - jaar Van de dieren in de leeftijdsgroep

Nadere informatie

Functies. Verdieping. 6N-3p 2010-2011 gghm

Functies. Verdieping. 6N-3p 2010-2011 gghm Functies Verdieping 6N-p 010-011 gghm Standaardfuncties Hieronder is telkens een standaard functie gegeven. Maak steeds een schets van de ijehorende grafiek. Je mag de GRM hierij geruiken. Y f ( x) x X

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 118 Extra oefening - Basis B-1a Vul k = 65 in, dat geeft de vergelijking 25u + 15 = 65. 25u = 50 dus u = 2. Er is 2 uur gewerkt ij mevrouw Groen. c 25u + 15 = 58,75 25u = 43,75 u = 43,75 : 25 dus u = 1,75.

Nadere informatie

vwo: Het maken van een natuurkunde-verslag vs 21062011

vwo: Het maken van een natuurkunde-verslag vs 21062011 Het maken van een verslag voor natuurkunde, vwo versie Deze tekst vind je op www.agtijmensen.nl: Een voorbeeld van een verslag Daar vind je ook een po of pws verslag dat wat uitgebreider is. Gebruik volledige

Nadere informatie

Formules en grafieken Hst. 15

Formules en grafieken Hst. 15 Formules en grafieken Hst. 5. De totale kosten zijn dan : 0,5. 0000 = 0.000 dollar. Dan zijn de kosten per ton, dollar. De prijs is dan :,. 0.000 = 4.000 dollar. 0,50 dollar per ton en 4000 mijl. Aflezen

Nadere informatie

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur

December 03, hfst4v2.notebook. Programma. opening paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3. pw hfst 3: 12 november 5e uur paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur 1 Stelling van Pythagoras bewijs paragraaf 1, 2 en 3 van hfst 4 vragen over hfst 3 pw hfst 3: 12 november 5e uur c a b b

Nadere informatie

Hoofdstuk 7 Exponentiële formules

Hoofdstuk 7 Exponentiële formules Opstap Mahten en proenten O-a 3 5 3 3 3 3 3 43 3 78 ( 5) 4 5 5 5 5 65 d 6 ( ) 5 6 9 O- Jak heeft het goede antwoord, want de 6 staat niet tussen haakjes. O-3a 7 4 4 g 7 3 5 7 ( ) 5 48 83 h 3 4 3 9 8 4

Nadere informatie

Stevin havo deel 1 Uitwerkingen hoofdstuk 2 Versnellen ( ) Pagina 1 van 20

Stevin havo deel 1 Uitwerkingen hoofdstuk 2 Versnellen ( ) Pagina 1 van 20 Stevin havo deel 1 Uitwerkingen hoofdstuk Versnellen (0-10-014) Pagina 1 van 0 De uitwerkingen van dit hoofdstuk zijn aangevuld met de manier die NiNa prefereert: meer nadruk op grafieken en gemiddelde

Nadere informatie

Hoofdstuk 1 Beweging in beeld. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 1 Beweging in beeld. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 1 Beweging in beeld Gemaakt als toevoeging op methode Natuurkunde Overal 1.1 Beweging vastleggen Het verschil tussen afstand en verplaatsing De verplaatsing (x) is de netto verplaatsing en de

Nadere informatie

Meten is weten, dat geldt ook voor het vakgebied natuurkunde. Om te meten gebruik je hulpmiddelen, zoals timers, thermometers, linialen en sensoren.

Meten is weten, dat geldt ook voor het vakgebied natuurkunde. Om te meten gebruik je hulpmiddelen, zoals timers, thermometers, linialen en sensoren. 1 Meten en verwerken 1.1 Meten Meten is weten, dat geldt ook voor het vakgebied natuurkunde. Om te meten gebruik je hulpmiddelen, zoals timers, thermometers, linialen en sensoren. Grootheden/eenheden Een

Nadere informatie

Hoofdstuk 1 - Formules en grafieken

Hoofdstuk 1 - Formules en grafieken Voprkennis aantal minuten 0 1 2 3 4 5 6 aantal graden Celsius 20 28 36 44 52 60 68 V_y V_y toename +8 +8 +8 +8 +8 +8 b Bij deze tabel hoort een lineaire formule want de toename in de onderste rij van de

Nadere informatie

Stevin vwo deel 1 Uitwerkingen hoofdstuk 1 Bewegen (31-08-2012) Pagina 1 van 20. b 12 3 5 7 c

Stevin vwo deel 1 Uitwerkingen hoofdstuk 1 Bewegen (31-08-2012) Pagina 1 van 20. b 12 3 5 7 c Stevin vwo deel 1 Uitwerkingen hoofdstuk 1 Bewegen (31-08-01) Pagina 1 van 0 0 a Opgaven 1.1 Meten van tijden en afstanden x = 1,66.. = 1,7 45 7,5 y = = 73,3.. = 73 4,6 6,3 π z = = 0,515.. = 0,5 38,4 1,7

Nadere informatie

Hoofdstuk 11: Eerstegraadsfuncties in R

Hoofdstuk 11: Eerstegraadsfuncties in R - 229 - Hoofdstuk 11: Eerstegraadsfuncties in R Definitie: Een eerstegraadsfunctie in R is een functie met een voorschrift van de gedaante y = ax + b (met a R 0 en b R ) Voorbeeld 1: y = 2x Functiewaardetabel

Nadere informatie

Antwoorden Natuurkunde Hoofdstuk 2

Antwoorden Natuurkunde Hoofdstuk 2 Antwoorden Natuurkunde Hoofdstuk 2 Antwoorden door Daan 4301 woorden 3 april 2016 6,8 6 keer beoordeeld Vak Methode Natuurkunde Systematische natuurkunde 2.1 Onderzoek naar bewegingen Opgave 1 a De (gemiddelde)

Nadere informatie

OEFENEN SNELHEID EN KRACHTEN VWO 3 Na Swa

OEFENEN SNELHEID EN KRACHTEN VWO 3 Na Swa v (m/s) OEFENEN SNELHEID EN KRACHTEN VWO 3 Na Swa Moeite met het maken van s-t en v-t diagrammen?? Doe mee, werk de vragen uit en gebruik je gezonde verstand en dan zul je zien dat het allemaal niet zo

Nadere informatie

Proef Natuurkunde Massa en zwaartekracht; veerconstante

Proef Natuurkunde Massa en zwaartekracht; veerconstante Proef Natuurkunde Massa en zwaartekracht; ve Proef door een scholier 1568 woorden 20 januari 2003 4,9 273 keer beoordeeld Vak Natuurkunde Natuurkunde practicum 1.3 Massa en zwaartekracht; ve De probleemstelling

Nadere informatie

Krachten (4VWO) www.betales.nl

Krachten (4VWO) www.betales.nl www.betales.nl Grootheden Scalairen Vectoren - Grootte - Eenheid - Grootte - Eenheid - Richting Bv: m = 987 kg x = 10m (x = plaats) V = 3L Bv: F = 17N s = Δx (verplaatsing) v = 2km/h Krachten optellen

Nadere informatie

HEREXAMEN EIND MULO tevens IIe ZITTING STAATSEXAMEN EIND MULO 2009

HEREXAMEN EIND MULO tevens IIe ZITTING STAATSEXAMEN EIND MULO 2009 MNSTERE VAN ONDERWJS EN VOLKSONTWKKELNG EXAMENBUREAU HEREXAMEN END MULO tevens e ZTTNG STAATSEXAMEN END MULO 2009 VAK : NATUURKUNDE DATUM : VRJDAG 07 AUGUSTUS 2009 TJD : 7.30 9.30 UUR DEZE TAAK BESTAAT

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk 1 - Funties en de rekenmahine ladzijde 1 V-1a Bij A hoort een kwadratish verand, want de toename van de toename is steeds 4. Bij B hoort een lineair verand, de toename is steeds 5. Bij C hoort

Nadere informatie

Opgave 1 Afdaling. Opgave 2 Fietser

Opgave 1 Afdaling. Opgave 2 Fietser Opgave 1 Afdaling Een skiër daalt een 1500 m lange helling af, het hoogteverschil is 300 m. De massa van de skiër, inclusief de uitrusting, is 86 kg. De wrijvingskracht met de sneeuw is gemiddeld 4,5%

Nadere informatie

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl.

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl. et1-stof Havo4: havo4 A: hoofdstuk 1 t/m 4 Deze opgaven en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 1 minuten ongeveer deelvragen. Oefen-examentoets et-1 havo 4 1/11 1. Een lancering.

Nadere informatie

Lineair verband vmbo-kgt34

Lineair verband vmbo-kgt34 Auteur Laatst gewijzigd Licentie Webadres VO-content 03 september 2019 CC Naamsvermelding-GelijkDelen 4.0 Internationale licentie https://maken.wikiwijs.nl/74228 Dit lesmateriaal is gemaakt met Wikiwijs

Nadere informatie

Deel 4: Krachten. 4.1 De grootheid kracht. 4.1.1 Soorten krachten

Deel 4: Krachten. 4.1 De grootheid kracht. 4.1.1 Soorten krachten Deel 4: Krachten 4.1 De grootheid kracht 4.1.1 Soorten krachten We kennen krachten uit het dagelijks leven: vul in welke krachten werkzaam zijn: trekkracht, magneetkracht, spierkracht, veerkracht, waterkracht,

Nadere informatie

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden

Hoofdstuk 1: Formules en grafieken. 1.1 Lineaire verbanden Hoofdstuk : Formules en grafieken.. Lineaire verbanden Opgave : in 0 minuten daalt het water 40 cm, dus 4 cm per minuut dus na minuut geldt: h 40 4 6 cm en na minuten geldt: h 40 4 cm b. formule II Opgave

Nadere informatie

RBEID 16/5/2011. Een rond voorwerp met een massa van 3,5 kg hangt stil aan twee touwtjes (zie bijlage figuur 2).

RBEID 16/5/2011. Een rond voorwerp met een massa van 3,5 kg hangt stil aan twee touwtjes (zie bijlage figuur 2). HOOFDSTUK OOFDSTUK 4: K NATUURKUNDE KLAS 4 4: KRACHT EN ARBEID RBEID 16/5/2011 Totaal te behalen: 33 punten. Gebruik eigen grafische rekenmachine en BINAS toegestaan. Opgave 0: Bereken op je rekenmachine

Nadere informatie

6 a 22,5 gram b v = 1,5m. 7 a 1,95 kg b g = 0,78 v c 13 / 0,78 16,7 dm 3. 8 a. b p = 200d

6 a 22,5 gram b v = 1,5m. 7 a 1,95 kg b g = 0,78 v c 13 / 0,78 16,7 dm 3. 8 a. b p = 200d Hoofdstuk 1 GETALLEN EN GRAFIEKEN 1. INTRO 1 a De slak klimt een uur met constante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz. 1,5 m/u c,5 m/u d 8 uur en 4 minuten

Nadere informatie

Kwadratische verbanden - Parabolen klas ms

Kwadratische verbanden - Parabolen klas ms Kwadratische verbanden - Parabolen klas 01011ms Een paar basisbegrippen om te leren: - De grafiek van een kwadratisch verband heet een parabool. - Een parabool is dalparabool met een laagste punt (minimum).

Nadere informatie

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden. EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.

Nadere informatie

Hoofdstuk 5 - Tabellen, grafieken, formules

Hoofdstuk 5 - Tabellen, grafieken, formules Hoofdstuk 5 - Taellen, grafieken, formules ladzijde 130 V-1a d De grafieken van de grond en de luht vertonen veel grotere temperatuurshommelingen dan de grafiek van het water. De grafiek van de grond omdat

Nadere informatie

Veerkracht. Leerplandoelen. Belangrijke formule: Wet van Hooke:

Veerkracht. Leerplandoelen. Belangrijke formule: Wet van Hooke: Veerkracht Leerplandoelen FYSICA TWEEDE GRAAD ASO WETENSCHAPPEN LEERPLAN SECUNDAIR ONDERWIJS VVKSO BRUSSEL D/2012/7841/009 5.1.3 Kracht B26 Een kracht meten door gebruik te maken van een dynamometer. B27

Nadere informatie

Blok 4 - Vaardigheden

Blok 4 - Vaardigheden lok - Vaardigheden Extra oefening - asis -a Het hellingsgetal is 60 = = 0,065. -a De hellingshoek is tan (0,065),6. c De hellingshoek van Raymond is tan ( 60 c 960 tan = geeft tan 6 = 600 = 600 tan 6 9

Nadere informatie

Veranderingen Antwoorden

Veranderingen Antwoorden Veranderingen Antwoorden Paragraaf 1 1a Waarschijnlijk hoeveel procent je energie is van je maximale hoeveelheid 1b Het gemiddelde ligt veel hoger, Bekijk de oppervlakte tussen de grafiek en de stippellijn.

Nadere informatie

UITWERKINGEN VOOR HET HAVO NETWERK HAVO A2

UITWERKINGEN VOOR HET HAVO NETWERK HAVO A2 UITWERKINGEN VOOR HET HAVO NETWERK HAVO A HOOFDSTUK 5 KERN DIFFERENTIEREN a) h t h cm/uur De snelheid wordt voorgesteld door de helling in de raaklijn in het punt A ) De Oppervlakte van het dakvlak is

Nadere informatie

Exact periode 3.2. Recht evenredig Omgekeerd evenredig Lambert Beer Lenzen en toepassingen

Exact periode 3.2. Recht evenredig Omgekeerd evenredig Lambert Beer Lenzen en toepassingen Exact periode 3.2?! Recht evenredig Omgekeerd evenredig Lambert Beer Lenzen en toepassingen 1 Lo41 per 3 exact recht evenredig, oefenen presentatie recht evenredig Deze link toont uitleg over recht evenredig

Nadere informatie

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag Practicum algemeen 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag 1 Diagrammen maken Onafhankelijke grootheid en afhankelijke grootheid In veel experimenten wordt

Nadere informatie

Blok 6A - Vaardigheden

Blok 6A - Vaardigheden Extra oefening - Basis B-a 7 + e 7 + 0 00 0 ( ) 0 f 8 ( + ) 0 0 0 8 0 80 c 7 + 9 7 g 9 0 7 40 0 40 47 d + h + 9 8 0 8 7 9 0 0 0 0 B-a 0,4 8 7, e 0,,, 0,7 8, 8,87 f 0,00 0 0,7 c 0,77 9,4 g 0,004 88,8 d

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv bladzijde 68 a Uit de eerste rij van de tabel volgt y= maar uit de tweede rij volgt y= 0 8 Dus en y zijn niet recht evenredig b y is dan 0 = 8 keer zo groot geworden c Als met 6 wordt vermenigvuldigd dan

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ

Nadere informatie

Bij een tonnage van ton (over mijl) kost het 0,75 $/ton totale kosten ,75 = ($).

Bij een tonnage van ton (over mijl) kost het 0,75 $/ton totale kosten ,75 = ($). C von Schwartzenberg 1/14 1a 0,5 $/ton (zie de verticale as bij punt A) 0 000 0,5 = 10 000 ($) 1b,1 $/ton (ga vanuit A verticaal omhoog naar de rood gestippelde grafiek) 0 000,1 = 4000 ($) us 4, keer zoveel

Nadere informatie

Zo n grafiek noem je een dalparabool.

Zo n grafiek noem je een dalparabool. V-a Hoofdstuk - Funties Hoofdstuk - Funties Voorkennis O A B De grafiek ij tael A is een rehte lijn, want telkens als in de tael met toeneemt neemt met toe. Het startgetal is en het hellingsgetal is. d

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk - Funties en de rekenmahine Voorkennis: Funties ladzijde V-a De formule is T = + 00, d Je moet oplossen + 00, d = dus dan geldt 00, d = en dan is d = : 00, 77 m V-a f( ) = = 0en f( ) = ( ) (

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - asis -1a Van trap 1 is de hellingshoek 17. Van trap is de hellingshoek 14. Van trap 1 is het hellingsgetal 60 = 0,. 00 Van trap is het hellingsgetal 0 = 0,. 10 c De tekening hiernaast

Nadere informatie

Samenvatting Natuurkunde Natuurkunde Samenvatting NOVA 3 vwo

Samenvatting Natuurkunde Natuurkunde Samenvatting NOVA 3 vwo Samenvatting Natuurkunde Natuurkunde Samenvatting NOVA 3 vwo Samenvatting door N. 1441 woorden 9 oktober 2012 7,6 27 keer beoordeeld Vak Methode Natuurkunde Nova PARAGRAAF 1; KRACHT Krachten herkennen

Nadere informatie

Theorie: Snelheid (Herhaling klas 2)

Theorie: Snelheid (Herhaling klas 2) Theorie: Snelheid (Herhaling klas 2) Snelheid en gemiddelde snelheid Met de grootheid snelheid geef je aan welke afstand een voorwerp in een bepaalde tijd aflegt. Over een langere periode is de snelheid

Nadere informatie

3.Logaritmische grafieken en exponentiële verbanden.

3.Logaritmische grafieken en exponentiële verbanden. Info Toegepaste wiskunde Inhoudsopgave 1.Rekenen met grote en kleine getallen. Onderwerpen Contexten 1.1 Machten. 1. Negatieve machten. 1. Voorvoegsels en wetenschappelijke notatie. Molrekenen. 1.4 Druk

Nadere informatie

Significante cijfers en meetonzekerheid

Significante cijfers en meetonzekerheid Inhoud Significante cijfers en meetonzekerheid... 2 Significante cijfers... 2 Wetenschappelijke notatie... 3 Meetonzekerheid... 3 Significante cijfers en meetonzekerheid... 4 Opgaven... 5 Opgave 1... 5

Nadere informatie

LOPUC. Een manier om problemen aan te pakken

LOPUC. Een manier om problemen aan te pakken LOPUC Een manier om problemen aan te pakken LOPUC Lees de opgave goed, zodat je precies weet wat er gevraagd wordt. Zoek naar grootheden en eenheden. Schrijf de gegevens die je nodig denkt te hebben overzichtelijk

Nadere informatie

VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013. TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX

VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013. TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4. Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX VAK: natuurkunde KLAS: Havo 4 DATUM: 20 juni 2013 TIJD: 10.10 11.50 uur TOETS: T1 STOF: Hfd 1 t/m 4 Toegestane hulpmiddelen: Binas + (gr) rekenmachine Bijlagen: 2 blz Opmerkingen voor surveillant XXXXXXXXXXXXXXXXXXX

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Hoofdstuk - Transformaties Voorkennis: Standaardfuncties bladzijde 70 f () = g () = sin h() = k () = log p () = m () = n () = b D f = [0, en B f = [0, ; D g = en B g =[, ] ; D h = en B h = 0, ; D k

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

2.1 Onderzoek naar bewegingen

2.1 Onderzoek naar bewegingen 2.1 Onderzoek naar bewegingen Opgave 1 afstand a De (gemiddelde) snelheid leid je af met snelheid =. tijd Je moet afstand en snelheid bespreken om iets over snelheid te kunnen zeggen. afstand snelheid

Nadere informatie

Foutenberekeningen. Inhoudsopgave

Foutenberekeningen. Inhoudsopgave Inhoudsopgave Leerdoelen :... 3 1. Inleiding.... 4 2. De absolute fout... 5 3. De KOW-methode... 7 4. Grootheden optellen of aftrekken.... 8 5. De relatieve fout...10 6. grootheden vermenigvuldigen en

Nadere informatie

Lessen in Krachten. Door: Gaby Sondagh en Isabel Duin Eckartcollege

Lessen in Krachten. Door: Gaby Sondagh en Isabel Duin Eckartcollege Lessen in Krachten Door: Gaby Sondagh en Isabel Duin Eckartcollege Krachten werken op alles en iedereen. Sommige krachten zijn nodig om te blijven leven. Als er bijv. geen zwaartekracht zou zijn, zouden

Nadere informatie