In dit hoofdstuk komen korte onderwerpen aan bod die we uitwerken met DERIVE. Zo leer je heel wat functies van DERIVE kennen.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "In dit hoofdstuk komen korte onderwerpen aan bod die we uitwerken met DERIVE. Zo leer je heel wat functies van DERIVE kennen."

Transcriptie

1 Hoofdstuk Een DERIVE-tour In dit hoofdstuk komen korte onderwerpen aan bod die we uitwerken met DERIVE. Zo leer je heel wat functies van DERIVE kennen..1 Exact en benaderend rekenen Met de standaardinstelling van Derive levert een gelijkheidsteken of uitwerking van een uitdrukking : de exacte Met verkrijg je een decimale benadering met 10 beduidende cijfers. Voor een ander aantal gebruik je de functie approx : Je mag de ingebouwde functies (zoals approx) intikken met kleine letters. In het algebra-venster verschijnen steeds hoofdletters. De irrationale getallen π en e alsook het complexe getal i (met i = 1) kan je snel invoeren door het gelijktijdig indrukken van de toetsen Ctrl + p, Ctrl + e, en Ctrl + i.

2 Hierbij verschijnen e en i als respectievelijk ê en î in het algebra-venster, dit om een onderscheid te maken tussen gewone één-letter-variabelen met dezelfde naam. Tenslotte vermelden we nog de snelle invoer Ctrl + q voor het - symbool.. Faculteiten Uit hoeveel cijfers bestaat het getal 50! = L 3 1(lees 50 faculteit)? I.p.v. het aantal cijfers te tellen levert de benadering. Het getal bestaat uit 65 cijfers. Een andere werkwijze is het aantal karakters te bepalen waaruit het getal bestaat met het DIM-commando. Hiervoor moeten we het getal eerst omzetten in een woord met het STRING-commando. We ontbinden 50! in priemfactoren met de functie factor. Klaarblijkelijk bevat 50! de factor 10 1 = en geen hogere macht van 10. Hieruit kan je besluiten dat het getal eindigt op 1 nullen. Ga na dat 00! een getal is van 5743 cijfers. Dit getal verschijnt erg snel op je scherm (de rekentijd vind je rechts op de infolijn). De ontbinding in priemfactoren van 00! is een zeer rekenintensieve opdracht die je computer te lang laat rekenen (onderbreek met abort). Om te weten op hoeveel nullen 00! eindigt volstaat het echter om na te gaan hoeveel factoren 5 er in het getal aanwezig zijn. Hiertoe bepalen we het aantal veelvouden van 5, 5 = 5, 15 = 5 3 en 65 = 5 4 in de getallen 1,,3, K,00. Welnu, deling van 00 door 5, 5, 15, 65 levert als quotiënten 400, 80, 16 en 3. Het getal 00! eindigt dus op = 499 nullen!.3 Elementaire algebra.3.1 Bewerkingen met veeltermen Een krachtig aspect van een computeralgebrapakket is dat het symbolisch rekenwerk kan verrichten volgens de regels van de algebra.

3 DERIVE voert o.a. de volgende vereenvoudigingen automatisch uit. De vermenigvuldiging kan je impliciet invoeren als 5x of expliciet als 5 x. Dit geldt ook voor xy of x y..3. Ontbinden in factoren Voer de uitdrukking x 5 + 7x x 3 7x 44x + 6 in, selecteer de optie Factor van het Simplify menu en kies voor Rational. Klik vervolgens op OK en op de sneltoets. Dit geeft : Klikken op Factor i.p.v. op OK geeft rechtstreeks de ontbinding. Bestudeer het effect van de keuze Radical en Complex :

4 Bovenstaande werkwijze geldt voor elke functie die je aanspreekt via een menu. Voer de te bewerken uitdrukking in en/of selecteer deze in het algebra-venster. Kies de gepaste functie uit het menu. Een nieuw menu of venster verschijnt. Kies de gewenste optie of vul de nodige gegevens in. Klik OK om de opgave te laten verschijnen en klik op voor het resultaat. De knop naast OK levert rechtstreeks het resultaat. Het is handig om een uitdrukking in het algebra-venster te gebruiken voor een nieuwe opgave. Selecteer hiervoor eerst de uitdrukking in het algebra-venster en breng deze met F3 naar de invoerlijn. Op deze wijze leer je ook hoe je de functie rechtstreeks kan intikken via de invoerlijn..3.3 De Expand-functie Met de Expand-functie uit het Simplify-menu kan je haakjes uitwerken, een rationale functie splitsen in partieelbreuken en een Euclidische deling van veeltermen uitvoeren. a) Haakjes uitwerken Het expanderen van ( a+ b+ c) 3 naar alle variabelen en naar a alleen levert : b) Splitsen in partieelbreuken Het splitsen in partieelbreuken van 3x + 5 geeft : x 5x+ 6

5 Voor 3x + 5 x verkrijg je volgend resultaat : 3x + 5 Het Expand-commando alleen volstaat hier niet. Selecteer de breuk x gebruik de optie Expand uit het Simplify menu. Kies Radical voor Amount. en Expanderen van de beide tellers van bovenstaand resultaat geeft : c) Euclidische deling van veeltermen We bepalen het quotiënt en de rest bij deling van de veelterm door x 3 + x + x x + 3x + 3x+ 1 Bij deling van een veelterm A door een veelterm B verkrijgen we een quotiënt Q en A R een rest R zodat A= B Q+ Rof = Q +. Hierbij wordt R gesplitst in een B B B som van partieelbreuken. Het uitvoeren van het Factor-commando op deze som geeft de breuk R B.

6 Het quotiënt en de rest vind je ook met de functies quotient en remainder..3.4 Vergelijkingen en ongelijkheden De optie Expression uit het Solve menu (sneltoets ) kan je kiezen voor het oplossen van een vergelijking of ongelijkheid. We geven enkele voorbeelden. Voorbeeld 1 : x 4 10x + 1= 0 Voer eerst de vergelijking in en klik vervolgens op : Klik op OK en vervolgens op : Voorbeeld : 3 x 1 x+ Voorbeeld 3 : ax + bx + c = 0

7 Voorbeeld 4 Vergelijkingen die men niet exact kan oplossen, kunnen numeriek worden x opgelost. Bijvoorbeeld e = x+. Een ruwe manuele schets van de functies in beide leden toont vlug dat er een,. positieve en een negatieve oplossing is in het interval [ ] Voer eerst de vergelijking in, klik vervolgens op verschijnt als volgt in. en vul het venster dat Klik dan op OK en. Selecteer de bovenstaande tweede opdracht, breng ze naar de invoerlijn met F3 en wijzig het interval in [0,]..4 Calculus Met de items uit het Calculus-menu (of de corresponderende sneltoetsen) kan je o.a limieten, afgeleiden (al dan niet partieel), integralen, eindige of oneindige sommen (reeksen) en Taylorreeksen berekenen. We geven voor ieder item een voorbeeld.

8 Voorbeeld 1 - : lim x x + 1 x. x Breng met F3 de limietuitdrukking naar de invoerlijn : Het laatste cijfer 0 is voor een tweezijdige limiet (dit mag je ook weglaten). Voor de linkerlimiet vul je een negatief getal in (bv. -1) en voor de rechterlimiet een positief getal (bv. 1). Voorbeeld - : d 3x + 5. dx x 5x+ 6 Voorbeeld 3 - : x dx. ( x+ 1 ).( x + 1)

9 Voorbeeld 4 - : n 3 k. k = 1 Voorbeeld 5 : De 5 de orde Taylorveelterm van x e rond het punt 0..5 Variabelen en functies Voor het definiëren van variabelen en functies via de invoerlijn gebruik je het symbool : =. Een variabele kan je meermaals definiëren via de invoerlijn. DERIVE gebruikt dan telkens de laatste definitie voor verdere berekeningen. Opgelet, verplaatsen of wissen van regels in het algebra-venster heeft hierop geen invloed.

10 Met de optie Variable Domain uit het Declare-menu kan je een verzameling definiëren waartoe een variabele behoort. Dit kan invloed hebben op algebraïsche vereenvoudigingen. Heel wat vereenvoudigingen worden, met de standaardinstellingen van DERIVE, complex uitgewerkt. Substituties kan je uitvoeren met de optie Variable Substitution (sneltoets ) uit het Simplify menu of met de optie Subexpression Substitution om een variabele of een geselecteerde deeluitdrukking te vervangen door een uitdrukking. De onderstaande functies zijn enkele van de functies die standaard aanwezig zijn in DERIVE. exp(x) ln(x), log(x) log(x,a) sqrt(x) sin(x), cos(x), tan(x) asin(x), acos(x), atan(x) abs(x) exponentiële functie met grondtal e logaritmische functie met grondtal e logaritmische functie met grondtal a x goniometrische functies cyclometrische functies absolute waarde van een reëel getal, modulus van een complex getal Raadpleeg de optie Contents van het Help-menu voor de andere ingebouwde functies. Het is vaak handig om een ingebouwde functie een nieuwe naam te geven :.6 Vectoren Een vector groepeert een aantal objecten en wordt ingegeven met vierkante haakjes. De opeenvolgende elementen worden gescheiden door een komma. Tekst (tussen aanhalingstekens) kan ook dienen als element.

11 Voer de vector [ "drie eerste priemgetallen",, 3, 5] in : Met de sneltoets kan je een vector definiëren via een venster door het invullen van het aantal elementen en de opeenvolgende elementen. Erg handig is het genereren van een vector met het vector-commando. De uitdrukking VECTOR ( k^, k,1,5) genereert de vector [1,4,9,16,5]. Lees VECTOR ( k^, k,1,5) als de vector met elementen van de vorm k, waarbij k loopt van 1 tot 5 (in stappen van 1, een andere stapgrootte geef je aan met een extra argument achteraan). Je kan dezelfde vector genereren door eerst de algemene term k in te voeren en vervolgens met de optie Vector van het Calculus-menu de grenzen en de stapgrootte van de lopende variabele aan te geven. Met de functie Select kan je een vector genereren van elementen met een bepaalde eigenschap.

12 .7 Grafieken.7.1 Het plotten van grafieken Voer eerst het functievoorschrift in in het algebra-venster in de vorm van x 10x + 1, y= x 10x + 1 of f( x): = x 10x + 1. Klik vervolgens op. Een D-plot-venster verschijnt. Klik opnieuw op van de functie te tekenen. in dit venster om de grafiek Standaard wordt een grafiek getekend met x en y in het interval [ 4,4] geen geschikt venster.. Dit is vaak Gebruik de pictogrammen een mooi beeld krijgt van de grafiek. om in of uit te zoomen zodat je Je kan ook een venster definiëren met de optie Plot Region of Plot Range uit het Set-menu. Om de grafiek van een andere functie toe te voegen, klik je op om naar het algebra-venster te gaan. Selecteer de nieuwe functie en plot de functie. grafiek van 4 y= x 10x + 1

13 .7. Het traceren van een grafiek D.m.v. de Trace-mode (functietoets F3 of sneltoets ) kan je je bewegen op de grafieken met de pijltjestoetsen en. Indien er meerdere grafieken geplot zijn, kan je de gewenste grafiek in de Trace-mode selecteren met de pijltjestoetsen en. Linksonder bevinden zich de coördinaten van het punt van de grafiek waar je je bevindt. Dit is handig om te bepalen waar zich ongeveer een nulpunt bevindt van de functie. Het uitzetten van de Trace-mode doe je door nogmaals F3 of te drukken..7.3 Meerdere grafieken gelijktijdig tekenen Wanneer je DERIVE vraagt een vector van minstens 3 functies te tekenen, worden deze functies één na één getekend. Hiermee is het mogelijk parameterinvloeden op de grafiek van functies te onderzoeken. Voer VECTOR ( kcos( x), k,1,5) in en werk uit met. Dit geeft de vector [ cos( x ), cos( x ), 3cos( x ), 4cos( x ), 5cos( x )]. Het plotten van deze uitdrukking levert meteen de grafieken van de 5 functies in die vector. De uitdrukking VECTOR ( kcos( x), k,1,5) kan niet rechtstreeks geplot worden. Met de sneltoets wis je de laatst getekende grafiek en met kan je een grafiek voorzien van tekst. Je wist alle grafieken met Ctrl + D. Twee functies in één keer tekenen kan met het trucje : [ cos( x),cos( x+ π / 4),? ].7.4 Parameterkrommen Voor het tekenen van een parameterkromme gebruik je een vector met twee functies van één parameter. DERIVE interpreteert deze vector als een koppel coördinaten. Na opgave van de grenswaarden van de parameter wordt de kromme geplot. [cos( ),sin(4 )] t t met t [ 0,π ]

14 Gebruik voor het invoeren van π als grenswaarde pi. Parameterkrommen zijn handig voor het tekenen van de grafiek van een functie en,sin( ) sin( t), t met de inverse relatie. Maak bijvoorbeeld een grafiek van [ t t ] en [ ] t [ π,π].8.. Voor het creëren van een orthonormaal assenstelsel, zie paragraaf.7.5 Grafieken van f(x,y) = 0 Impliciet gedefinieerde functies kunnen zonder meer getekend worden. Hieronder vind je de grafiek van het folium van Descartes met als vergelijking 3 3 x + y 3xy= 0. DERIVE kan geen impliciet gemaakte grafieken traceren..7.6 Krommen gedefinieerd in poolcoördinaten Kies met de optie Coordinate System uit het Set-menu van het D-plot-venster voor polar. Plaats de uitdrukking r = 1+ cos( θ ) in het algebra-venster en plot deze uitdrukking na het invullen van de grenzen voor de poolhoek θ.

15 .7.7 3D-grafieken Om een grafiek te plotten van de functie z= f(, x y) selecteer je eerst deze uitdrukking in het algebra-venster. Klik op om een 3D-plot-venster te openen. Klik nog eens op om de grafiek te plotten. x + y cos 4 z = 3 + x + y Deze grafiek werd verkregen door enkele aanpassingen in het 3D-Plot-venster met de opties Plot Range en Options Display van het Set-menu. Merk op dat rechtsklikken op of naast de grafiek in het 3D-venster extra mogelijkheden biedt. Met de sneltoetsen kan de grafiek roteren. Met kan je doorsneden bestuderen met vlakken van de vorm x= c of y = c..8 Nuttige tips Hoe verkrijg je een orthonormaal D-assenstelsel? De grafiek van Via de optie Aspect Ratio van Set-menu. Druk op Reset. 1/3 y= x wordt niet getekend voor x < 0!? Kies via de optie Simplification Settings van het Declare-menu voor Real onder Branch. Hoe definieer je de functie f( x) ( ) f( x): = if 0 x, x^ = x met 0 x?

16 x + 1 als x < 0 Hoe definieer je de functie f( x) =? 3 x elders 3 ( ) f(): x = if x< 0, x+ 1, x x als 0 x< Hoe definieer je de functie f( x) = 3x als x 4 ( ( )) f(): x = if0 x<,,if x x 4,3x? Hoe plaats je een grafiek in een algebra-venster? Met de optie Embed van het File-menu van het Plot-venster. Hoe plaats je een algebra-venster en een plot-venster naast elkaar? Met de optie Tile Vertically van het Window-menu. Hoe krijg je een overzicht van de vensters die gedefinieerd zijn? Met de optie Display Tabs van het Window-menu. Onderaan verschijnen aanklikbare tabs waarmee je alle beschikbare vensters kan activeren. Hoe arceer je het gebied tussen de grafieken van twee functies f en g over het interval [ ab, ]? DERIVE tekent alle punten ( ), xy die voldoen aan de logische uitdrukking :.

Derive in ons wiskundeonderwijs Christine Decraemer

Derive in ons wiskundeonderwijs Christine Decraemer Dag van de Wiskunde 003 de en 3 de graad Module 6: Eerste sessie Derive in ons wiskundeonderwijs Christine Decraemer Je kunt Derive het best vergelijken met een uitgebreid rekentoestel. Niet enkel numerieke,

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong

( ) Hoofdstuk 4 Verloop van functies. 4.1 De grafiek van ( ) 4.1.1 Spiegelen t.o.v. de x-as, y-as en de oorsprong Hoofdstuk 4 Verloop van functies Met DERIVE is het mogelijk om tal van eigenschappen van functies experimenteel te ontdekken. In een eerste paragraaf onderzoeken we het verband tussen de grafieken van

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

2. Een eerste kennismaking met Maxima

2. Een eerste kennismaking met Maxima . Een eerste kennismaking met Maxima Als u nog niet eerder kennis heeft gemaakt met CAS (Computer Algebra System) software, dan lijkt Maxima misschien erg gecompliceerd en moeilijk, zelfs voor het oplossen

Nadere informatie

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix

Hoofdstuk 3. Matrices en stelsels. 3.1 Matrices. [[1,7]],[[12,8] ] of [ 1, 7; 12,8 ] bepaalt de matrix Hoofdstuk 3 Matrices en stelsels 3.1 Matrices Een matrix is in DERIVE gedefinieerd als een vector van vectoren. De rijen van de matrix zijn de elementen van de vector. Op de volgende manier kan je een

Nadere informatie

ICT in de lessen wiskunde van de 3de graad: een overzicht

ICT in de lessen wiskunde van de 3de graad: een overzicht ICT in de lessen wiskunde van de 3de graad: een overzicht Dr Didier Deses KA Koekelberg - VUB wiskak@yahoo.com Inleiding Wat omvat ICT in de wiskunde? Rekenmachine Wetenschappelijk Grafisch Symbolisch

Nadere informatie

De studie van vlakke krommen gegeven in parametervorm. Lieve Lemmens en Andy Snoecx

De studie van vlakke krommen gegeven in parametervorm. Lieve Lemmens en Andy Snoecx De studie van vlakke krommen gegeven in parametervorm Doelstellingen Lieve Lemmens en An Snoecx Deze tekst stelt een voorbeeld van de analyse van een kromme met de Texas TI-NSpire (en/of computersoftware)

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet. ? GEOGEBRA 4 R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Roger Van Nieuwenhuyze GeoGebra 4 Pagina 1 1. Schermen

Nadere informatie

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking 5. Vergelijkingen 5.1. Vergelijkingen met één variabele 5.1.1. Oplossen van een lineaire vergelijking Probleem : We willen x oplossen uit de lineaire vergelijking p x+q=r met p. Maxima biedt daartoe in

Nadere informatie

Parameterkrommen met Cabri Geometry

Parameterkrommen met Cabri Geometry Parameterkrommen met Cabri Geometry 1. Inleiding Indien twee functies f en g gegeven zijn die afhangen van eenzelfde variabele (noem deze t), dan kunnen de functiewaarden daarvan gebruikt worden als x-

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Limieten en asymptoten van rationale functies (versie juli 2008) Rationale functies. Inleiding Functies als f : 5 5, f 2 : 2 3 + 2 f 3 : 32 + 7 4 en f 4 :

Nadere informatie

Beginnen met de Casio fx-cg20

Beginnen met de Casio fx-cg20 Beginnen met de Casio fx-cg20 - Korte uitleg van de meest gebruikte knoppen en functies - De knoppen De belangrijkste menu s Navigatie door de mappen Auteur: Tim Bebensee Vertaling en bewerking: Wouter

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 2011) Katholieke Universiteit Leuven September 20 Module 4 Limieten en asymptoten van rationale functies (versie 22 augustus 20) Inhoudsopgave Rationale functies. Inleiding....................................2

Nadere informatie

4. Vereenvoudigen expressies

4. Vereenvoudigen expressies Computeralgebra met Maxima 4. Vereenvoudigen expressies 4.1. Vereenvoudigen ratsimp De grote kracht van een Computer-Algebra-Systeem als Maxima ligt daarin, dat niet alleen numerieke expressies vereenvoudigd/berekend

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

WolframAlpha gratis op internet

WolframAlpha gratis op internet WolframAlpha gratis op internet Jan van de Craats Nog steeds worden leerlingen op havo en vwo verplicht om voor de wiskundelessen een grafische rekenmachine aan te schaffen. Zo n apparaat is duur, zeer

Nadere informatie

HP Prime: Functie App

HP Prime: Functie App HP Prime Graphing Calculator HP Prime: Functie App Meer over de HP Prime te weten komen: http://www.hp-prime.nl De Functie-App op de HP Prime Gebruik! om het keuzescherm voor de applicaties te openen en

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1

Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1 Inhoud Aan de student V Studiewijzer Aan de docent VII IX Over de auteurs XI Hoofdstuk 0 Basiswiskunde 1 Leereenheid 0.1 Elementaire algebra 3 0.1.1 Verzameling van getallen en het symbool 4 0.1.2 Merkwaardige

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

6. Functies. 6.1. Definities en gebruik van functies/variabelen

6. Functies. 6.1. Definities en gebruik van functies/variabelen Computeralgebra met Maxima 6. Functies 6.1. Definities en gebruik van functies/variabelen Een van de belangrijkste gereedschappen in een CAS betreft het gebruik van functies (definitie, berekening en grafiek).

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Graphmatica. Afstandsmodule Wiskunde 2b Greet Verhelst

Graphmatica. Afstandsmodule Wiskunde 2b Greet Verhelst Afstandsmodule 2 Inleiding Graphmatica is een wiskundig programma om interactief algebraïsche vergelijkingen, of wiskundige grafieken te tekenen. het tekent de grafiek van functies waarvan het voorschrift

Nadere informatie

Appendix B: Complexe getallen met Cabri Geometry II 1

Appendix B: Complexe getallen met Cabri Geometry II 1 Appendix B: Complexe getallen met Cabri Geometry II 1 1. Macro s in Cabri Indien een constructie geregeld uitgevoerd moet worden, is het interessant deze constructie op te slaan in een macro. Het definiëren

Nadere informatie

Prof. dr. W. Guedens Lic. M. Reynders

Prof. dr. W. Guedens Lic. M. Reynders Prof. dr. W. Guedens Lic. M. Reynders 2006 Universiteit Hasselt Het toetsenbord van de TI-84 Plus... 1 Toetsenbord zones... 1 De kleurencodes op het toetsenbord gebruiken... 2 Het uitleesscherm... 3 Soorten

Nadere informatie

GeoGebra Quickstart. Snelgids voor GeoGebra. Vertaald door Beatrijs Versichel en Ivan De Winne

GeoGebra Quickstart. Snelgids voor GeoGebra. Vertaald door Beatrijs Versichel en Ivan De Winne GeoGebra Quickstart Snelgids voor GeoGebra Vertaald door Beatrijs Versichel en Ivan De Winne Dynamische meetkunde, algebra en analyse vormen de basis van GeoGebra, een educatief pakket, dat meetkunde en

Nadere informatie

Handleiding gebruik van Wortel TU/e

Handleiding gebruik van Wortel TU/e Handleiding gebruik van Wortel TU/e Wortel TU/e ( http://wortel.tue.nl ) is een website waar je (zelfstudie ) materiaal Wiskunde kunt vinden. Om gebruik te maken van de website, moet je een moderne browser

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

18de T3 Vlaanderen Symposium Oostende 24 & 25 augustus 2015 Introductie tot TI-Nspire CAS m.b.v. ipad met voorbeelden uit de tweede graad

18de T3 Vlaanderen Symposium Oostende 24 & 25 augustus 2015 Introductie tot TI-Nspire CAS m.b.v. ipad met voorbeelden uit de tweede graad 18de T Vlaanderen Symposium Oostende 24 & 25 augustus 2015 Introductie tot TI-Nspire CAS m.b.v. ipad met voorbeelden uit de tweede graad Paul Verbelen 97 Inleiding tot TI-Nspire CAS ipad app gebruik van

Nadere informatie

HP Prime toetsenbord. HP Prime Graphing Calculator. Het toetsenbord van de HP-Prime

HP Prime toetsenbord. HP Prime Graphing Calculator. Het toetsenbord van de HP-Prime HP Prime Graphing Calculator HP Prime toetsenbord Meer over de HP Prime te weten komen: http://www.hp-prime.nl Het toetsenbord van de HP-Prime Er zijn 47 toetsen met daarbij de cursorbesturing. In deze

Nadere informatie

Microsoft Mathematics - versie 4 Microsoft Wiskundehulp. Dag van de wiskunde 2e 3e graad zaterdag 23 november 2013. Paul Decuypere

Microsoft Mathematics - versie 4 Microsoft Wiskundehulp. Dag van de wiskunde 2e 3e graad zaterdag 23 november 2013. Paul Decuypere Microsoft Mathematics - versie 4 Microsoft Wiskundehulp Dag van de wiskunde 2e 3e graad zaterdag 23 november 2013 Paul Decuypere Inhoud Inleiding... 5 Basisbewerkingen... 6 2.1 Het startscherm van Wiskundehulp

Nadere informatie

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45

2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 = 45 15 x 3 = 45 2.1 Bewerkingen [1] Video Geschiedenis van het rekenen (http://www.youtube.com/watch?v=cceqwwj6vrs) 15 x 3 is een product. 15 en 3 zijn de factoren van het product. 15 : 3 = 5 15 : 3 is een

Nadere informatie

III.2 De ordening op R en ongelijkheden

III.2 De ordening op R en ongelijkheden III.2 De ordening op R en ongelijkheden In de vorige paragraaf hebben we axioma s gegeven voor de optelling en vermenigvuldiging in R, maar om R vast te leggen moeten we ook ongelijkheden in R beschouwen.

Nadere informatie

Integratietechnieken: substitutie en partiële integratie

Integratietechnieken: substitutie en partiële integratie Integratietechnieken: substitutie en partiële integratie Inleiding In dit pakket wordt zeer kort de definitie van onbepaalde integralen herhaald evenals het verband tussen bepaalde en onbepaalde integralen.

Nadere informatie

Derive in ons wiskundeonderwijs Christine Decraemer

Derive in ons wiskundeonderwijs Christine Decraemer Dag van de Wiskunde 2003 2 de en 3 de graad Module 6: Tweede sessie Derive in ons wiskundeonderwijs Christine Decraemer Volgens het leerplan is in de doelstellingen het gebruik van ICT-hulpmiddelen opgenomen,

Nadere informatie

De eerste functie bevindt zich op de toets en is in het wit aangegeven.

De eerste functie bevindt zich op de toets en is in het wit aangegeven. Hoofdstuk 1 Een TI-83 (Plus) - Tour 1.1 De toetsen De toetsen van de TI-83 (Plus) kunnen ingedeeld worden in een viertal groepen : de grafische toetsen de edit-toetsen de geavanceerde functietoetsen het

Nadere informatie

INTERACTIEF LESGEVEN - OP ELK PLATFORM - VOOR IEDEREEN. Dag van de wiskunde 24 november 2012. Björn Carreyn

INTERACTIEF LESGEVEN - OP ELK PLATFORM - VOOR IEDEREEN. Dag van de wiskunde 24 november 2012. Björn Carreyn INTERACTIEF LESGEVEN - OP ELK PLATFORM - VOOR IEDEREEN Dag van de wiskunde 24 november 2012 Björn Carreyn twitter/mrcarreyn bjorn.carreyn@me.com http://www.demare.be/mrcarreyn 1! Inhoud werkwinkel! 3 2!

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Integratie van de informatica in de wiskunde WIRIS 2.0

Integratie van de informatica in de wiskunde WIRIS 2.0 Integratie van de informatica in de wiskunde WIRIS 2.0 9 Dynamische meetkunde met Wiris 9.1 Vlakke analytische meetkunde Het palet Meetkunde bevat een aantal gereedschappen voor het uitvoeren van meetkundige

Nadere informatie

Dictaat Rekenvaardigheden. Loek van Reij

Dictaat Rekenvaardigheden. Loek van Reij Dictaat Rekenvaardigheden Loek van Reij 0 maart 006 i ii Voorwoord In het middelbaar onderwijs hebben zich de laatste jaren grote veranderingen voltrokken: de tweede fase met de daaraan verbonden profielkeuze

Nadere informatie

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2

2.0 Voorkennis. Herhaling merkwaardige producten: (A + B) 2 = A 2 + 2AB + B 2 (A B) 2 = A 2 2AB + B 2 (A + B)(A B) = A 2 B 2 .0 Voorkennis Herhaling merkwaardige producten: (A + B) = A + AB + B (A B) = A AB + B (A + B)(A B) = A B Voorbeeld 1: (5a) (a -3b) = 5a (4a 1ab + 9b ) = 5a 4a + 1ab 9b = 1a + 1ab 9b Voorbeeld : 4(x 7)

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

3.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 3.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014

Wiskundige Technieken 1 Uitwerkingen Hertentamen 23 december 2014 Wiskundige Technieken Uitwerkingen Hertentamen 3 december 04 Normering voor 4 pt vragen andere vragen naar rato: 4pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

SNELLE INVOER MET EXCEL

SNELLE INVOER MET EXCEL SNELLE INVOER MET EXCEL Naam Nr Klas Datum Het is de bedoeling dat je de gegevens van een tabel op efficiënte wijze invoert, dat betekent: correct en snel! Microsoft Excel biedt verscheidene mogelijkheden

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT

ENKELE VOORBEELDEN UIT TE WERKEN MET ICT Differentiaalvergelijkingen kunnen we ook oplossen met behulp van ICT. In dit geval zijn de oplossingen uitgewerkt met behulp van Derive. dy De differentiaalvergelijking = ky, met k een reëel getal Voorbeeld

Nadere informatie

8.1 Rekenen met complexe getallen [1]

8.1 Rekenen met complexe getallen [1] 8.1 Rekenen met complexe getallen [1] Natuurlijke getallen: Dit zijn alle positieve gehele getallen en nul. 0, 1, 2, 3, 4, 5, 6,... Het symbool voor de natuurlijke getallen is Gehele getallen: Dit zijn

Nadere informatie

Het installatiepakket haal je af van de website http://www.gedesasoft.be/.

Het installatiepakket haal je af van de website http://www.gedesasoft.be/. Softmaths 1 Softmaths Het installatiepakket haal je af van de website http://www.gedesasoft.be/. De code kan je bekomen op de school. Goniometrie en driehoeken Oplossen van driehoeken - Start van het programma:

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

Wetenschappelijke rekenmachines

Wetenschappelijke rekenmachines TI-30 eco RS Wetenschappelijke rekenmachines Nederlands Aan- en uitzetten... 2 Resultaten... 2 Hoofdbewerkingen... 2 Procenten... 3 Breuken... 3 Machten en wortels... 4 Logaritmische functies... 5 Hoekeenheden...

Nadere informatie

2.1 Lineaire formules [1]

2.1 Lineaire formules [1] 2.1 Lineaire formules [1] De lijn heeft een helling (richtingscoëfficiënt) van 1; De lijn gaat in het punt (0,2) door de y-as; In het plaatje is de lijn y = x + 2 getekend. Omdat de grafiek een rechte

Nadere informatie

Geven we decimale getallen als invoer, dan past Maxima zich onmiddellijk aan en geeft ook decimale getallen als resultaat:

Geven we decimale getallen als invoer, dan past Maxima zich onmiddellijk aan en geeft ook decimale getallen als resultaat: 3. Rekenkunde 3.1. Rekenmachine Maxima kan als een zakrekenmachine gebruikt worden voor het uitvoeren van eenvoudige en ingewikkelde berekeningen. Maxima rekent exact met gehele getallen, breuken en wortelvormen

Nadere informatie

1.1 Tweedegraadsvergelijkingen [1]

1.1 Tweedegraadsvergelijkingen [1] 1.1 Tweedegraadsvergelijkingen [1] Er zijn vier soorten tweedegraadsvergelijkingen: 1. ax 2 + bx = 0 (Haal de x buiten de haakjes) Voorbeeld 1: 3x 2 + 6x = 0 3x(x + 2) = 0 3x = 0 x + 2 = 0 x = 0 x = -2

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Beknopte handleiding voor Derive 5.0 for Windows

Beknopte handleiding voor Derive 5.0 for Windows - Lesbrief Beknopte handleiding voor Derive 5.0 for Voorspelbaarheid en Populaties in de tijd Doelgroep Klas 5 t/m 6 havo en vwo Vakken en domeinen Algemene natuurwetenschappen VWO Wiskunde VWO: A domein

Nadere informatie

Je kan op verschillende manierenn gegevens verplaatsen. Je zal steeds eerst de cellen die je wilt

Je kan op verschillende manierenn gegevens verplaatsen. Je zal steeds eerst de cellen die je wilt Knippen - Plakken Je kan op verschillende manierenn gegevens verplaatsen. Je zal steeds eerst de cellen die je wilt verplaatsen, moeten selecteren om ze vervolgens te knippen en dan de cel te selecteren

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012

Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B 11 juni 2012 Centrale Commissie Voortentamen Wiskunde Uitwerkingen Voortentamen Wiskunde B juni 22 Voorlopige versie 6 juni 22 Opgave a f (x) = x2 x 5, dus f (x) = 2 2 x 5x. Dit geeft f (x) = 2 2 2x3. f (x) = 2 2 2x3

Nadere informatie

Dag van de wiskunde 2e en 3e graad 20 november 2010

Dag van de wiskunde 2e en 3e graad 20 november 2010 Maxima Een gratis en krachtig CAS (Computer Algebra System) Dag van de wiskunde 2e en 3e graad 20 november 2010 Paul Decuypere, VVKSO Inhoud 1 Inleiding... 5 2 Gebruikersinterface... 6 2.1 De gebruikersinterface...

Nadere informatie

Wiskunde onder spanning

Wiskunde onder spanning Wiskunde onder spanning Ik bespreek hier de opgaven met een analysekarakter in het centraal examen Wiskunde B van 15 mei 17. 1iseenkalesom.De functies f en g zijn gegeven door f(x) =ln(x) en g(x) = 1 e

Nadere informatie

Handleiding voor de DWO-auteursomgeving voor het maken van eigen opdrachten

Handleiding voor de DWO-auteursomgeving voor het maken van eigen opdrachten Handleiding voor de DWO-auteursomgeving voor het maken van eigen opdrachten 1 Inhoud Inleiding 3 Voorbereiding 3 Een bestaande activiteit aanpassen 4 Een volledig nieuwe activiteit ontwerpen 5 Berekeningen,

Nadere informatie

Paragraaf 1.1 : Lineaire verbanden

Paragraaf 1.1 : Lineaire verbanden Hoofdstuk 1 Formules, grafieken en vergelijkingen (H4 Wis B) Pagina 1 van 11 Paragraaf 1.1 : Lineaire verbanden Les 1 Lineaire verbanden Definitie lijn Algemene formule van een lijn : y = ax + b a = richtingscoëfficiënt

Nadere informatie

Excel reader. Beginner Gemiddeld. bas@excel-programmeur.nl

Excel reader. Beginner Gemiddeld. bas@excel-programmeur.nl Excel reader Beginner Gemiddeld Auteur Bas Meijerink E-mail bas@excel-programmeur.nl Versie 01D00 Datum 01-03-2014 Inhoudsopgave Introductie... - 3 - Hoofdstuk 1 - Databewerking - 4-1. Inleiding... - 5-2.

Nadere informatie

Functiewaarden en toppen

Functiewaarden en toppen Functiewaarden en toppen Formules invoeren Met [Y=] kom je op het formule-invoerscherm. Reeds ingevoerde formules wis je met [CLEAR]. Krijg je niet een scherm waarop Y1, Y2,... te zien zijn, kies dan bij

Nadere informatie

II. ZELFGEDEFINIEERDE FUNCTIES

II. ZELFGEDEFINIEERDE FUNCTIES II. ZELFGEDEFINIEERDE FUNCTIES In Excel bestaat reeds een uitgebreide reeks van functies zoals SOM, GEMIDDELDE, AFRONDEN, NU enz. Het is de bedoeling om functies aan deze lijst toe te voegen door in Visual

Nadere informatie

3. Lineaire vergelijkingen

3. Lineaire vergelijkingen 3. Lineaire vergelijkingen Lineaire vergelijkingen De vergelijking 2x = 3 noemen we een eerstegraads- of lineaire vergelijking. De onbekende x komt er namelijk tot de eerste macht in voor. Een eerstegraads

Nadere informatie

Vergelijkingen oplossen met categorieën

Vergelijkingen oplossen met categorieën Vergelijkingen oplossen met categorieën De bewerkingen die tot de oplossing van een vergelijking leiden zijn niet willekeurig, maar vallen in zes categorieën. Het stappenplan voor het oplossen maakt gebruik

Nadere informatie

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006

Analyse I. 1ste Bachelor Ingenieurswetenschappen Academiejaar 2005-2006 1ste semester 31 januari 2006 1ste semester 31 januari 2006 Analyse I 1. Onderstel dat f : [a, b] R continu is, en dat f(a)f(b) < 0. Toon aan dat f minstens 1 nulpunt heeft gelegen in het interval (a, b). 2. Gegeven is een functie

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

Basistechnieken TI-84 Plus C Silver Edition

Basistechnieken TI-84 Plus C Silver Edition Basistechnieken TI-84 Plus C Silver Edition Als je dit practicum doorwerkt, weet je de eerste beginselen van het werken met de grafische rekenmachine TI-84 Plus C Silver Edition. In de tekst van het practicum

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: Logaritmen en getal e. 23 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: Logaritmen en getal e 23 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op dinsdag 6 januari 2009, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Breuksplitsen WISNET-HBO NHL. update juli 20014

Breuksplitsen WISNET-HBO NHL. update juli 20014 Breuksplitsen WISNET-HBO NHL update juli 20014 1 Inleiding Bij sommige opleidingen is het belangrijk dat er enige vaardigheid ontwikkeld wordt om grote breuken te manipuleren en om te zetten in een aantal

Nadere informatie

Extra oefeningen goniometrische functies. Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. ...

Extra oefeningen goniometrische functies. Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. ... Extra oefeningen goniometrische functies Oefening 1: Juist of fout? Leg uit. Indien fout, volstaat het een tegenvoorbeeld te geven. a. Elke periodieke functie heeft een (kleinste) periode. b. Er bestaat

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Ijkingstoets 4 juli 2012

Ijkingstoets 4 juli 2012 Ijkingtoets 4 juli 2012 -vragenreeks 1 1 Ijkingstoets 4 juli 2012 Oefening 1 In de apotheek bezorgt de apotheker zijn assistent op verschillende tijdstippen van de dag een voorschrift voor een te bereiden

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

Genererende Functies K. P. Hart

Genererende Functies K. P. Hart genererende_functies.te 27--205 Z Hoe kun je een rij getallen zo efficiënt mogelijk coderen? Met behulp van functies. Genererende Functies K. P. Hart Je kunt rijen getallen op diverse manieren weergeven

Nadere informatie

Vergelijkingen met breuken

Vergelijkingen met breuken Vergelijkingen met breuken WISNET-HBO update juli 2013 De bedoeling van deze les is het doorwerken van begin tot einde met behulp van pen en papier. 1 Oplossen van gebroken vergelijkingen Kijk ook nog

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Voorbereidende opgaven Kerstvakantiecursus. Rekenregels voor vereenvoudigen ( ) = = ( ) ( ) ( ) = ( ) ( ) = ( ) = = ( )

Voorbereidende opgaven Kerstvakantiecursus. Rekenregels voor vereenvoudigen ( ) = = ( ) ( ) ( ) = ( ) ( ) = ( ) = = ( ) Voorbereidende opgaven Kerstvakantiecursus Tips: Maak de voorbereidende opgaven voorin in één van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk hem dan uit tot

Nadere informatie

Inverse functies en limieten

Inverse functies en limieten Inverse functies en limieten Inverse functies We nemen aan dat A en B deelverzamelingen zijn van R. Een functie f : A B heet één-één duidig of injectief als f (x 1 ) f (x 2 ) voor alle x 1 x 2, x 1, x

Nadere informatie

Meergraadsvergelijkingen

Meergraadsvergelijkingen Meergraadsvergelijkingen Meergraads vergelijkingen In dit hoofdstuk gaan we ons bezig houden met tweede- en hogeregraads vergelijkingen. In een tweedegraads vergelijking komt de onbekende x tot de tweede

Nadere informatie

Symbol for Windows BlissEditor

Symbol for Windows BlissEditor Handicom Symbol for Windows BlissEditor ( Versie 4 ) Handicom, 2006, Nederland Inhoud 1. Inleiding... 2 2. Schermopbouw van de Bliss Editor...3 2.1 Werkbalk... 3 2.2 Matrix... 4 2.3 Palet met basisvormen,

Nadere informatie

Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be

Te kennen leerstof wiskunde voor het toelatingsexamen graduaten. Lea De Bie lea.debie@cvoleuven.be Te kennen leerstof wiskunde voor het toelatingsexamen graduaten Lea De Bie lea.debie@cvoleuven.be SOORTEN GETALLEN (Dit hoofdstukje geldt als inleiding en is geen te kennen leerstof). Natuurlijke getallen

Nadere informatie