Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Inhoud. Aan de student. Studiewijzer. Aan de docent. Over de auteurs. Hoofdstuk 0 Basiswiskunde 1"

Transcriptie

1 Inhoud Aan de student V Studiewijzer Aan de docent VII IX Over de auteurs XI Hoofdstuk 0 Basiswiskunde 1 Leereenheid 0.1 Elementaire algebra Verzameling van getallen en het symbool Merkwaardige producten, ontbinden in factoren Breuken, machten, staartdelingen, nogmaals ontbinden in factoren Gebroken vergelijkingen Oneigenlijke machten Vierkantsvergelijkingen 21 Samenvatting 22 Toets 22 Leereenheid 0.2 Functies en grafieken Lineaire functies De tweedegraadsfunctie Gebroken lineaire functies Ongelijkheden Wortelfuncties Exponentiële functies Logaritmen Logaritmische functies 47 Samenvatting 50 Toets 50 Leereenheid 0.3 Goniometrie en meetkunde Basisbegrippen uit de goniometrie Goniometrische formules Goniometrische vergelijkingen Enkele veel voorkomende oppervlakten en inhouden 65 Samenvatting 69 Toets 69 Eindtoets hoofdstuk 0 71

2 Hoofdstuk 1 Functies 73 Leereenheid 1.1 Functies 76 Praktijksituatie Notatieafspraken en grafieken Absolute waarde Samengestelde functies Functies van meer dan één variabele Inverse functies Cyclometrische functies Toepassingen met computeralgebra 97 Samenvatting 100 Toets 102 Leereenheid 1.2 Rijen en reeksen 103 Praktijksituatie Rijen Reeksen Enkele nieuwe afspraken en symbolen 116 Samenvatting 124 Toets 125 Leereenheid 1.3 Limieten en continuïteit 128 Praktijksituatie Het limietbegrip Rekenregels Enkele veel voorkomende limieten Limieten van reeksen Berekenen van limieten met computeralgebra Continuïteit 152 Samenvatting 155 Toets 155 Leereenheid 1.4 Complexe getallen 157 Praktijksituatie De verzameling complexe getallen Meetkundige voorstelling van complexe getallen Het oplossen van vergelijkingen Toepassingen van computeralgebra 170 Samenvatting 171 Toets 173 Eindtoets hoofdstuk Hoofdstuk 2 Differentiaalrekening 177 Leereenheid 2.1 Veranderingen 180 Praktijksituatie Gemiddelde verandering of differentiequotiënt Differentiaalquotiënt De meetkundige betekenis van de afgeleide 187 XIII

3 2.1.4 Twee standaardafgeleiden Het begrip differentieerbaarheid 192 Samenvatting 194 Toets 194 Leereenheid 2.2 De techniek van het differentiëren 196 Praktijksituatie Rekenregels voor het differentiëren Vervolg standaardafgeleiden (1) De afgeleide van samengestelde functies Vervolg standaardafgeleiden (2) 206 Samenvatting 209 Toets 209 Leereenheid 2.3 Hogere en partiële afgeleiden, differentialen en impliciet differentiëren 211 Praktijksituatie Hogere afgeleiden Partiële afgeleiden Differentialen Impliciete functies van één variabele 226 Samenvatting 228 Toets 228 Leereenheid 2.4 Wiskundige toepassingen van de differentiaalrekening 230 Praktijksituatie De reeks van Maclaurin De reeks van Taylor De limietstellingen van De l Hôpital 242 Samenvatting 244 Toets 245 Leereenheid 2.5 Het systematisch onderzoek van functies en hun grafiek 246 Praktijksituatie Stijgen, dalen en uiterste waarden De tweede afgeleide en de grafiek van een functie Het systematisch schetsen van grafieken Kromming en kromtestraal 255 Samenvatting 258 Toets 259 Leereenheid 2.6 Praktische toepassingen van de differentiaalrekening 260 Praktijksituatie Nader onderzoek van de doorbuiging van de kabel Hyperbolische functies Nog enkele uitgewerkte voorbeelden 269 Samenvatting 274 Toets 274 Eindtoets hoofdstuk XIV

4 Hoofdstuk 3 Het oplossen van niet-lineaire vergelijkingen 279 Leereenheid 3.1 Numerieke berekeningen met behulp van een computer 282 Praktijksituatie sin x De limietberekening lim x 0 x cos x De limietberekening lim 286 x 0 x De berekening van het getal e Een tweede manier om e te berekenen 289 Samenvatting 290 Toets 291 Leereenheid 3.2 Het numeriek oplossen van niet-lineaire vergelijkingen met één onbekende 292 Praktijksituatie Algebraïsche vergelijkingen De halveringsmethode voor f(x) De nauwkeurigheid van de halveringsmethode Implementatie van de halveringsmethode 300 Samenvatting 306 Toets 306 Leereenheid 3.3 De methode van Newton-Raphson 308 Praktijksituatie Beschrijving van de methode van Newton-Raphson Het implementeren van de methode van Newton-Raphson De convergentiesnelheid 316 Samenvatting 320 Toets 320 Leereenheid 3.4 De methode van successieve substitutie 322 Praktijksituatie Beschrijving van de methode van successieve substitutie De convergentiesnelheid De implementatie van de methode van successieve substitutie 330 Samenvatting 333 Toets 335 Eindtoets hoofdstuk Hoofdstuk 4 Integraalrekening 337 Leereenheid 4.1 De bepaalde en onbepaalde integraal De bepaalde integraal De onbepaalde integraal Het berekenen van bepaalde integralen Oneigenlijke integralen 357 XV

5 4.1.5 Het gebruik van computeralgebra 359 Samenvatting 362 Toets 363 Leereenheid 4.2 De kunst van het primitiveren 365 Praktijksituatie Rekenregels voor het primitiveren De substitutiemethode Partiële integratie Reductieformules Integratie door middel van breuksplitsing Het gebruik van computeralgebra 380 Samenvatting 381 Toets 381 Leereenheid 4.3 Numerieke methoden voor het berekenen van bepaalde integralen 382 Praktijksituatie Trapeziumregel Kwadratische interpolatie: de regel van Simpson Foutschatting bij de trapeziumregel en de regel van Simpson Het gebruik van computeralgebra 394 Samenvatting 398 Toets 398 Leereenheid 4.4 Toepassingen van de integraalrekening 400 Praktijksituatie De arbeid verricht door een kracht Waterdruk in een reservoir Vloeistofstroom door een buis Het volume van een omwentelingslichaam De booglengte van een kromme Het zwaartepunt van een vlakke figuur Het gebruik van computeralgebra 419 Samenvatting 422 Toets 422 Eindtoets hoofdstuk Lijst van wiskundige symbolen 427 Grieks alfabet 429 Register 430 XVI

Wiskunde. deel. uitwerkingen. voor het hoger onderwijs. Th.M. van Pelt R.B.J. Pijlgroms W.V. Smeets J.L. Walter. Zevende druk

Wiskunde. deel. uitwerkingen. voor het hoger onderwijs. Th.M. van Pelt R.B.J. Pijlgroms W.V. Smeets J.L. Walter. Zevende druk uitwerkingen en extra, praktijkgerichte vraagstukken Wiskunde voor het hoger onderwijs deel 1 Th.M. van Pelt R.B.J. Pijlgroms W.V. Smeets J.L. Walter Zevende druk Wiskunde voor het hoger onderwijs Deel

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE

WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS. deel 1 LOTHAR PAPULA. 2e druk > ACADEMIC SERVICE WISKUNDE VOOR HET HOGER TECHNISCH ONDERWIJS deel 1 LOTHAR PAPULA 2e druk > ACADEMIC SERVICE inhoud 1 Algemene grondbegrippen 1 1.1 Enkele basisbegrippen in de verzamelingenleer 1 1.1.1 Definitieenbeschrijvingvaneenverzameling

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

10e editie Inhoudsopgave leerjaar 6

10e editie Inhoudsopgave leerjaar 6 10e editie Inhoudsopgave leerjaar 6 Inhoudsopgave Deel 6 vwo A Hoofdstuk 1: Samengestelde functies Voorkennis: Differentiëren 1-1 Machtsfuncties 1-2 Machtsfuncties differentiëren 1-3 Wortelfuncties en

Nadere informatie

K.0 Voorkennis. Herhaling rekenregels voor differentiëren:

K.0 Voorkennis. Herhaling rekenregels voor differentiëren: K.0 Voorkennis Herhaling rekenregels voor differentiëren: f ( ) a f '( ) 0 n f ( ) a f '( ) na n f ( ) c g( ) f '( ) c g'( ) f ( ) g( ) h( ) f '( ) g'( ) h'( ) ( som regel) p( ) f ( ) g( ) p'( ) f '( )

Nadere informatie

Examentraining dpt Wiskunde

Examentraining dpt Wiskunde Examentraining dpt Wiskunde Examentraining Wiskunde leer je door herhaling. Bij dpt Wiskunde zijn we er dan ook van overtuigd dat het beter is om een examen- of andere wiskundetrainingen te verdelen over

Nadere informatie

Voorkennis wiskunde voor Bio-ingenieurswetenschappen

Voorkennis wiskunde voor Bio-ingenieurswetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Samenvatting Wiskunde B

Samenvatting Wiskunde B Bereken: Bereken algebraisch: Bereken eact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte opties. Kies op een eamen in dit geval voor berekenen

Nadere informatie

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen

voorkennis wiskunde voor Farmaceutische wetenschappen en Biomedische wetenschappen Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

Examentraining dpt Wiskunde

Examentraining dpt Wiskunde Examentraining dpt Wiskunde Examentraining De beste manier van wiskunde studeren komt neer op veel oefenen, herhalen en het laten bezinken van nieuwe theorie. Bij dpt Wiskunde zijn we er dan ook van overtuigd

Nadere informatie

11 e editie. Inhoudsopgaven VWO 5

11 e editie. Inhoudsopgaven VWO 5 11 e editie Inhoudsopgaven VWO 5 Inhoudsopgave 5 vwo A 1 Formules herleiden 1-1 Lineaire formules 1-2 Gebroken formules 1-3 Wortelformules 1-4 Machtsformules 1-5 Gemengde opdrachten 2 Statistiek (op computer)

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen. Overzicht bestaande content. Deliverable 3.6. Hans Cuypers. ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen. Overzicht bestaande content. Deliverable 3.6. Hans Cuypers. ONBETWIST Deliverable 3. Overzicht bestaande content Deliverable 3.6 Hans Cuypers Inleiding Binnen het ONBETWIST project worden toetsen en items voor verschillende deelgebieden van de wiskunde gemaakt. In voorgaande projecten,

Nadere informatie

Schoolagenda 5e jaar, 8 wekelijkse lestijden

Schoolagenda 5e jaar, 8 wekelijkse lestijden Leerkracht: Koen De Naeghel Schooljaar: 2012-2013 Klas: 5aLWi8, 5aWWi8 Aantal taken: 19 Aantal repetities: 14 Schoolagenda 5e jaar, 8 wekelijkse lestijden Taken Eerste trimester: 11 taken indienen op taak

Nadere informatie

Modulen voor Calculus- en Analysevakken

Modulen voor Calculus- en Analysevakken Modulen voor Calculus- en Analysevakken Versie juni 2005 Deze indeling in modulen is zoveel mogelijk onafhankelijk van enig leerboek. Echter, om de invulling ervan concreet te maken is er aangegeven waar

Nadere informatie

K.1 De substitutiemethode [1]

K.1 De substitutiemethode [1] K. De substitutiemethode [] Voorbeeld : Differentieer de functie f() = ( + ) 5 Voor het differentiëren van deze functie gebruik je de kettingregel: Stap : Schrijf de functie f() als volgt: y = u 5 met

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006

Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Studiewijzer Wiskunde 1 voor B(2DB00, 2DB30), cursus 2005/2006 Inleiding In de cursus Wiskunde 1 voor B (2DB00) wordt gebruikt het boek Calculus, Robert T. Smith, Roland B. Minton, second edition, Mc Graw

Nadere informatie

Schoolagenda klas 6aMTWi-6bEcWi-6dWWi6

Schoolagenda klas 6aMTWi-6bEcWi-6dWWi6 Schoolagenda klas 6aMTWi-6bEcWi-6dWWi6 Koen De Naeghel Onze-Lieve-Vrouwecollege Assebroek schooljaar 2014-2015 Eerste trimester Toetsen 4 repetities en enkele kleine, aangekondigde toetsen (80% TTE) dag

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009

Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Studiewijzer Calculus 1 voor Bouwkunde (2DB80), cursus 2008/2009 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early Transcendental Functions Robert T. Smith,

Nadere informatie

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012

Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Studiewijzer Calculus 2 voor Bouwkunde (2DB90), cursus 2011/2012 Inleiding In de cursus Calculus 2 voor Bouwkunde (2DB90) wordt evenals in de cursus Calculus 1 gebruikt het boek: Calculus, Early Transcendental

Nadere informatie

Studiewijzer Calculus voor het schakelprogramma van Bouwkunde (2DB03) cursus 2015/2016

Studiewijzer Calculus voor het schakelprogramma van Bouwkunde (2DB03) cursus 2015/2016 Studiewijzer Calculus voor het schakelprogramma van Bouwkunde (2DB03) cursus 2015/2016 Inleiding In de cursus Calculus voor het schakelprogramma van Bouwkunde (2DB03) wordt het volgende gebruikt het boek:

Nadere informatie

Aansluiting vwo - wo. wiskunde op het vwo versus wiskunde op de UT. 16-6-2015 Presentatietitel: aanpassen via Beeld, Koptekst en voettekst

Aansluiting vwo - wo. wiskunde op het vwo versus wiskunde op de UT. 16-6-2015 Presentatietitel: aanpassen via Beeld, Koptekst en voettekst Aansluiting vwo - wo wiskunde op het vwo versus wiskunde op de UT 16-6-2015 Presentatietitel: aanpassen via Beeld, Koptekst en voettekst 1 Opzet Korte introductie Overzicht wiskunde in het eerste jaar

Nadere informatie

Onderwerpen en kwaliteitscriteria VWO-WISKUNDE. Deliverable 3.2. Hans Cuypers en Henk van der Kooij

Onderwerpen en kwaliteitscriteria VWO-WISKUNDE. Deliverable 3.2. Hans Cuypers en Henk van der Kooij Onderwerpen en kwaliteitscriteria VWO-WISKUNDE Deliverable 3.2 Hans Cuypers en Henk van der Kooij Inleiding In deze deliverable zullen we voor het domein van de VWO-WISKUNDE de onderwerpen vaststellen

Nadere informatie

Zomercursussen Wiskunde en Chemie 2016

Zomercursussen Wiskunde en Chemie 2016 FACULTEIT INDUSTRIËLE INGENIEURSWETENSCHAPPEN Campus Geel Zomercursussen Wiskunde en Chemie 2016 Voor de opleidingen Industrieel Ingenieur: Bachelor en Master in de biowetenschappen Bachelor en Master

Nadere informatie

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012

Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Studiewijzer Calculus 1 voor Bouwkunde (2DB80) cursus 2011/2012 Inleiding In de cursus Calculus 1 voor Bouwkunde (2DB80) wordt gebruikt het boek Calculus, Early T ranscendental F unctions, Robert T. Smith,

Nadere informatie

10e editie Inhoudsopgave leerjaar 5

10e editie Inhoudsopgave leerjaar 5 10e editie Inhoudsopgave leerjaar 5 2 Inhoud 5 havo A Blok 1 Analyse Hoofdstuk 1 Allerlei formules 10 Voorkennis 12 1-1 Recht evenredig en omgekeerd evenredig 14 1-2 Formules met breuken 16 1-3 Formules

Nadere informatie

Studiehandleiding Basiswiskunde cursus

Studiehandleiding Basiswiskunde cursus Studiehandleiding Basiswiskunde cursus 2008 2009 Materiaal Bij dit college heb je nodig: Het boek Basisboek wiskunde van Jan van de Craats en Rob Bosch Isbn: 90 430 1156 8 De syllabus Aanvulling basiscursus

Nadere informatie

Inhoudsopgave. I Theorie 1

Inhoudsopgave. I Theorie 1 Inhoudsopgave I Theorie 1 1 Verzamelingen 3 1.1 Inleiding........................................ 3 1.2 Bewerkingen met verzamelingen........................... 6 1.2.1 Vereniging (unie) van twee verzamelingen.................

Nadere informatie

Modulehandleiding. voorjaar 2017

Modulehandleiding. voorjaar 2017 Modulehandleiding Cursus Basisvaardigheden Wiskunde voorjaar 2017 Mei 2017 Anton Goos Inhoud: 1. Beginvereisten 2. Relatie met andere modules 3. Introductie 4. Leermiddelen 5. Werkvormen, studiebelasting,

Nadere informatie

2014-2015 Naam Vak Wiskunde Niveau Mavo geldend voor klas 10. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA

2014-2015 Naam Vak Wiskunde Niveau Mavo geldend voor klas 10. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA 2014-2015 Naam Vak Wiskunde Niveau Mavo klas 10 Jaar naam Type Omschrijving Afnamemoment Weegfactor PTA Herkansbaar Weegfactor Rapportcijfer 9 toets 1 Analyse-I trim1/tw1 Nee 33% 9 toets 2 Analyse -II

Nadere informatie

Wiskunde in de profielen

Wiskunde in de profielen Wiskunde in de profielen Wiskunde in de profielen Wiskunde staat los van de rekentoets Alle leerlingen doen de rekentoets deze telt voor VWO mee in zak-slaag-regeling C&M Wiskunde C (of A) E&M Wiskunde

Nadere informatie

2015-2016 Naam Vak Wiskunde Niveau Mavo. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA. Rapportcijfer

2015-2016 Naam Vak Wiskunde Niveau Mavo. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA. Rapportcijfer 2015-2016 Naam Vak Wiskunde Niveau Mavo Jaar Toetsnaam Type Omschrijving Afnamemoment PTA Herkansbaar Rapportcijfer 9 toets 1 Toets Verbanden I 9/trim1/TW1 Nee 33% 9 toets 2 Toets Verbanden II 9/trim2/TW2

Nadere informatie

Laatste nieuws Calculus voor het schakelprogramma van Bouwkunde 2DB03, 2015-2016

Laatste nieuws Calculus voor het schakelprogramma van Bouwkunde 2DB03, 2015-2016 Laatste nieuws Calculus voor het schakelprogramma van Bouwkunde 2DB03, 2015-2016 Kwartiel 1, week 8.1 Op het college van dinsdag 20 oktober is het volgende behandeld: - opgaven van Oncourse over integralen

Nadere informatie

RESULTATEN BEVRAGING KSO/TSO

RESULTATEN BEVRAGING KSO/TSO Pagina 1 van 5 (19 scholen hebben de bevraging ingevuld) 1 Overzicht studierichtingen en complementaire uren Ingericht 6 uur 8 uur Andere (*) Architecturale Vorming Biotechnische Techniek Industriële 10

Nadere informatie

Naam Vak Wiskunde Niveau Mavo geldend voor klas 9 en 10. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA.

Naam Vak Wiskunde Niveau Mavo geldend voor klas 9 en 10. Jaar Toetsnaam Type Omschrijving Afnamemoment Weegfactor PTA. 2017-2018 Naam Vak Wiskunde Niveau Mavo klas 9 en 10 Jaar naam Type Omschrijving Afnamemoment Herkansbaar Rapportcijfer 9 toets 1 Verbanden I 9/trim1/TW1 Nee 20% 9 toets 2 Verbanden II 9/trim2/TW2 Nee

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

HANDBOEK Pienter 5/6 TSO 2/3/4u Exponentiële en logaritmische functies Pienter 6 TSO 2/3/4u Integralen STUDIERICHTING

HANDBOEK Pienter 5/6 TSO 2/3/4u Exponentiële en logaritmische functies Pienter 6 TSO 2/3/4u Integralen STUDIERICHTING JAARPLANNING GRAAD 3 VAK Wiskunde LEERJAAR 2 U/W 3+1 SCHOOLJAAR 2011-2012 HANDBOEK Pienter 5/6 TSO 2/3/4u Exponentiële en logaritmische functies Pienter 6 TSO 2/3/4u Integralen STUDIERICHTING 6BV LP NR

Nadere informatie

Schoolagenda klas 5d GWi8-WWi8

Schoolagenda klas 5d GWi8-WWi8 Schoolagenda klas 5d GWi8-WWi8 Koen De Naeghel Onze-Lieve-Vrouwecollege Assebroek schooljaar 2014-2015 Eerste trimester Toetsen 6 repetities en enkele kleine, aangekondigde testen (75% TTE) dag en datum

Nadere informatie

WolframAlpha gratis op internet

WolframAlpha gratis op internet WolframAlpha gratis op internet Jan van de Craats Nog steeds worden leerlingen op havo en vwo verplicht om voor de wiskundelessen een grafische rekenmachine aan te schaffen. Zo n apparaat is duur, zeer

Nadere informatie

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden:

Het oplossen van vergelijkingen Voor het benaderen van oplossingen van vergelijkingen van de vorm F(x)=0 bespreken we een aantal methoden: Hoofdstuk 4 Programmeren met de GR Toevoegen: een inleiding op het programmeren met de GR Hoofdstuk 5 - Numerieke methoden Numerieke wiskunde is een deelgebied van de wiskunde waarin algoritmes voor problemen

Nadere informatie

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π

dx; (ii) * Bewijs dat voor elke f, continu ondersteld in [0, a]: dx te berekenen.(oef cursus) Gegeven is de bepaalde integraal I n = π Analyse. (i) Bereken A = π sin d; +cos 2 (ii) * Bewijs dat voor elke f, continu ondersteld in [, a]: a f()d = a f(a )d (iii) Gebruik (i) en (ii) om de integraal J = π sin d te berekenen.(oef +cos 2 cursus)

Nadere informatie

Didactische wenken bij het onderdeel analyse

Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse Didactische wenken bij het onderdeel analyse 1/21 1. Eindtermen analyse Eindtermen ASO tweede graad ET 22 3 (4) aspecten van een functie ET 23 Standaardfuncties

Nadere informatie

6 Complexe getallen. 6.1 Definitie WIS6 1

6 Complexe getallen. 6.1 Definitie WIS6 1 WIS6 1 6 Complexe getallen 6.1 Definitie Rekenen met paren De vergelijking x 2 + 1 = 0 heeft geen oplossing in de verzameling R der reële getallen (vierkantsvergelijking met negatieve discriminant). We

Nadere informatie

Wiskunde de basis. deel 1. Jaap Grasmeijer. 1 e druk

Wiskunde de basis. deel 1. Jaap Grasmeijer. 1 e druk Wiskunde de basis deel Jaap Grasmeijer e druk Noordhoff Uitgevers bv Wiskunde de basis deel Jaap Grasmeijer Eerste druk Noordhoff Uitgevers Groningen/Houten Noordhoff Uitgevers bv Ontwerp omslag: Rocket

Nadere informatie

Modulewijzer InfPbs00DT

Modulewijzer InfPbs00DT Modulewijzer InfPbs00DT W. Oele 0 juli 008 Inhoudsopgave Inleiding 3 Waarom wiskunde? 3. Efficiëntie van computerprogramma s............... 3. 3D-engines en vectoranalyse................... 3.3 Bewijsvoering

Nadere informatie

Domein A: Vaardigheden

Domein A: Vaardigheden Examenprogramma Wiskunde A havo Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Algebra en tellen

Nadere informatie

Derive in ons wiskundeonderwijs Christine Decraemer

Derive in ons wiskundeonderwijs Christine Decraemer Dag van de Wiskunde 003 de en 3 de graad Module 6: Eerste sessie Derive in ons wiskundeonderwijs Christine Decraemer Je kunt Derive het best vergelijken met een uitgebreid rekentoestel. Niet enkel numerieke,

Nadere informatie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie

Machtsfuncties al dan niet samengesteld in de vorm van een polynoom- of veeltermfunctie Het volgende onderwerp is functie-onderzoek Dit is herhaling VWO-stof + nieuwe begrippen uit Kaper hfst 3 We bekijken de functies wiskundig en soms vanuit economisch oogpunt ( begrenzingen variabelen 0

Nadere informatie

BASISWISKUNDE voor HAVO en VWO. Wat moet er in, en waarom?

BASISWISKUNDE voor HAVO en VWO. Wat moet er in, en waarom? Jan van de Craats (UvA, OU) BASISWISKUNDE voor HAVO en VWO Wat moet er in, en waarom? Studiedag NVVW, 6 november 2004 Wat is Basiswiskunde in dit verband? Basiswiskunde heeft betrekking op het ingangsniveau

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /46 Elektrotechniek, Wiskunde en Informatica EWI Kunnen we elke integraal oplossen? Z e x x dx Z e x2 dx

Nadere informatie

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10

FORMULARIUM. www.basiswiskunde.be. Inhoudsopgave. 1 Algebra 2. 2 Lineaire algebra 4. 3 Vlakke meetkunde 5. 4 Goniometrie 7. 5 Ruimtemeetkunde 10 FORMULARIUM wwwbasiswiskundebe Inhoudsopgave Algebra 2 2 Lineaire algebra 4 3 Vlakke meetkunde 5 4 Goniometrie 7 5 Ruimtemeetkunde 0 6 Reële functies 2 7 Analyse 3 8 Logica en verzamelingen 6 9 Kansrekening

Nadere informatie

begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde B gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie domein subdomein in CE moet in SE mag in SE A Vaardigheden A1: Informatievaardigheden A2:

Nadere informatie

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u

== Uitwerkingen Tentamen Analyse 1, WI1600 == Maandag 10 januari 2011, u == en Tentamen Analyse, WI6 == Maandag januari, 4.-7.u Technische Universiteit Delft, Faculteit EWI. Gegeven is de functie + e + e arctan,, f = +, >. a Beargumenteer dat f continu is op R. b Bepaal de

Nadere informatie

1. Orthogonale Hyperbolen

1. Orthogonale Hyperbolen . Orthogonale Hyperbolen a + b In dit hoofdstuk wordt de grafiek van functies van de vorm y besproken. Functies c + d van deze vorm noemen we gebroken lineaire functies. De grafieken van dit soort functies

Nadere informatie

Wiskunde met (bedrijfs)economische toepassingen

Wiskunde met (bedrijfs)economische toepassingen FACULTEIT TEW Wiskunde met (bedrijfs)economische toepassingen Oefenexamens 1ste Bachelor TEW Eerste deel (januari) Academiejaar 2013-2014 Het examen vindt voor iedereen plaats in twee delen : het eerste

Nadere informatie

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica

UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde en Informatica Uitwerking tentamen Functies van één veranderlijke (5260) op donderdag 25 oktober 2007, 9.00 2.00 uur. De uitwerkingen van de opgaven

Nadere informatie

Aansluiting VWO WO en Wiskunde D

Aansluiting VWO WO en Wiskunde D Aansluiting VWO WO en Wiskunde D Steven Wepster Departement Wiskunde Universiteit Utrecht D-dag 2013 Wie ben ik? lang geleden: een jaartje wi aan onderbouw nu: UD (geschiedenis van de) wiskunde, Utrecht

Nadere informatie

14.1 Vergelijkingen en herleidingen [1]

14.1 Vergelijkingen en herleidingen [1] 4. Vergelijkingen en herleidingen [] Er zijn vier soorten bijzondere vergelijkingen: : AB = 0 => A = 0 of B = 0 ( - 5)( + 7) = 0-5 = 0 of + 7 = 0 = 5 of = -7 : A = B geeft A = B of A = - B ( ) = 5 ( )

Nadere informatie

Studiewijzer Calculus A voor T, 2DS05 duaal, cursus 2005/2006

Studiewijzer Calculus A voor T, 2DS05 duaal, cursus 2005/2006 Studiewijzer Calculus A voor T, 2DS05 duaal, cursus 2005/2006 Inleiding In de cursus Calculus A voor T (2DS05) wordt gebruikt het boek Calculus, a complete course, Robert A. Adams, fifth edition, Addison

Nadere informatie

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1.

1. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + 1) = 1. Tentamen-wiskunde?. De basiswiskunde. Een van mijn collega s, liet een mooi verhaal zien: De opgave was: Los op ln(x + 2) ln(x + ) =. Oplossing : ln(x + 2) = + ln(x + ) x + 2 = ln + x + 3 = ln dus x =

Nadere informatie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden

Nadere informatie

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B...

Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B... Een checklist is een opsomming van de dingen die je moet weten en kunnen. HAVO 4 wiskunde B 0. voorkennis In klas 3 heb je hoofdstuk 10 over algebraische vaardigheden gedaan. Hieronder zie je daarvan een

Nadere informatie

Breuksplitsen WISNET-HBO NHL. update juli 20014

Breuksplitsen WISNET-HBO NHL. update juli 20014 Breuksplitsen WISNET-HBO NHL update juli 20014 1 Inleiding Bij sommige opleidingen is het belangrijk dat er enige vaardigheid ontwikkeld wordt om grote breuken te manipuleren en om te zetten in een aantal

Nadere informatie

4. een in de context beschreven samenhang vertalen in een functievoorschrift.

4. een in de context beschreven samenhang vertalen in een functievoorschrift. 1 Centrale Commissie Voortentamen Wiskunde Leerstoflijst Wiskunde B1 De leerstof van voortentamen wiskunde B1 van de Centrale Commissie Voortentamen Wiskunde omvat de domeinen Bg, Cg, D, Eg, Bb, Db en

Nadere informatie

Tweede Programmeeropgave Numerieke Wiskunde 1 De golfplaat Uiterste inleverdatum : vrijdag 16 mei 2003

Tweede Programmeeropgave Numerieke Wiskunde 1 De golfplaat Uiterste inleverdatum : vrijdag 16 mei 2003 Tweede Programmeeropgave Numerieke Wiskunde 1 De golfplaat Uiterste inleverdatum : vrijdag 16 mei 2003 I Doelstelling en testcase In deze programmeeropgave zullen we een drietal numerieke integratiemethoden

Nadere informatie

Voorbereiding PTA1-V5 wiskunde A

Voorbereiding PTA1-V5 wiskunde A Voorbereiding PTA1-V5 wiskunde A ma. 1 mrt. Les 1 Allerlei vergelijkingen oplossen (1) wo. 3 mrt. Les Valt uit: ga zelf iets oefenen! vr. 5 mrt. Les 3 Normale verdeling ma. 8 mrt. Les 4 Allerlei vergelijkingen

Nadere informatie

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007

Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 Bijlage bij Eindverslag van de Nomenclatuurcommissie Wiskunde september 2007 zie havo vwo aantonen 1 aanzicht absolute waarde afgeleide (functie) notatie met accent: bijvoorbeeld f'(x), f' notatie met

Nadere informatie

college 2: partiële integratie

college 2: partiële integratie 39 college 2: partiële integratie Zoals de substitutieregel voor integratie de inverse van de kettingregel voor differentiatie genoemd zou kunnen worden, zo is partiële integratie de inverse van de productregel:

Nadere informatie

Schoolagenda klas 4d W

Schoolagenda klas 4d W Schoolagenda klas 4d W Koen De Naeghel Onze-Lieve-Vrouwecollege Assebroek schooljaar 2016-2017 Eerste trimester Toetsen wiskunde (80% TTE) 5 repetities en eventueel enkele kleine, aangekondigde testen

Nadere informatie

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14

1.1 Definities en benamingen 9 Oefeningen Cirkel door drie punten 13 Oefeningen 14 INHOUD 1 De cirkel 9 1.1 Definities en benamingen 9 Oefeningen 11 1.2 Cirkel door drie punten 13 Oefeningen 14 1.3 Onderlinge ligging van een rechte en een cirkel 20 1.3.1 Aantal snijpunten van een rechte

Nadere informatie

Standaardafgeleiden. Wisnet-HBO. update maart 2011

Standaardafgeleiden. Wisnet-HBO. update maart 2011 Standaardafgeleiden Wisnet-HBO update maart 2011 1 Inleiding Als je nog niets over differentiëren weet, kun je beter eerst naar de les Wat is Differentiëren gaan in Wisnet Verder zijn er Maplets om de

Nadere informatie

Studiewijzer Calculus A voor T (2DS05), cursus 2011/2012

Studiewijzer Calculus A voor T (2DS05), cursus 2011/2012 Studiewijzer Calculus A voor T (2DS05), cursus 2011/2012 Inleiding In de cursus Calculus A voor T (2DS05) wordt gebruikt het boek Calculus, a complete course, Robert A. Adams, seventh edition, Pearson,

Nadere informatie

T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r

T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r 0 7-0 8 AFDELING EN LEERJAAR: B T/H 07 08 Aantal proefwerken: 8 (+ 3 in toetsweken) Aantal werkstukken: 0 of I Proefwerk

Nadere informatie

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007

GETAL& RUIMTE. Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Verbeteringen havo A 10e editie (2011) t.o.v. editie 2007 Havo A deel 1 begint met het niet-examenonderwerp Statistiek (was hoofdstuk 4). Al snel wordt de grafische rekenmachine ingezet en ook bij de andere

Nadere informatie

BASISBOEK WISKUNDE. voor havo, vwo, hbo en universiteit. Jan van de Craats en Rob Bosch. Een imprint van Pearson Education

BASISBOEK WISKUNDE. voor havo, vwo, hbo en universiteit. Jan van de Craats en Rob Bosch. Een imprint van Pearson Education BASISBOEK WISKUNDE voor havo, vwo, hbo en universiteit Jan van de Craats en Rob Bosch Een imprint van Pearson Education ISBN: 90-430-1156-8 NUR: 123 Trefw: wiskunde, wiskundeonderwijs Illustraties en LATEX

Nadere informatie

Toegepaste wiskunde VOOR HET HOGER ONDERWIJS. 6e druk. Jan Blankespoor Kees de Joode Aad Sluijter DEEL 1

Toegepaste wiskunde VOOR HET HOGER ONDERWIJS. 6e druk. Jan Blankespoor Kees de Joode Aad Sluijter DEEL 1 DEEL 1 Toegepaste wiskunde VOOR HET HOGER ONDERWIJS 6e druk Jan Blankespoor Kees de Joode Aad Sluijter Toegepaste wiskunde Deel 1 Toegepaste wiskunde voor het hoger onderwijs Deel 1 drs. J.H. Blankespoor

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of

Primitieve functie Als f : R --> R continu is op een interval, dan noemt men F : R --> R een primiteive functie of Enkelvoudige integralen Kernbegrippen Onbepaalde integralen Van onbepaalde naar bepaalde integraal Bepaalde integralen Integratiemethoden Standaardintegralen Integratie door splitsing Integratie door substitutie

Nadere informatie

Functies van één veranderlijke

Functies van één veranderlijke Functies van één veranderlijke 952600 Docent : Anton Stoorvogel E-mail: A.A.Stoorvogel@utwente.nl /29 Elektrotechniek, Wiskunde en Informatica EWI UNIVERSITEIT TWENTE Faculteit Elektrotechniek, Wiskunde

Nadere informatie

Wiskunde curriculum voor Bachelor fase N

Wiskunde curriculum voor Bachelor fase N Wiskunde curriculum voor Bachelor fase N 1. Inleiding wiskunde (5 sp, kwartiel 1.1) - Rekenvaardigheden: algebraïsche rekenvaardigheden, differentiëren, integreren, goniometrie, functie onderzoek etc (herhaling

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde voor B. 1 Eenvoudige operaties en functies. 1. De bewerkingen optellen aftrekken, vermenigvuldigen, delen en machtsverheffen worden

Nadere informatie

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x.

1.0 Voorkennis. Voorbeeld 1: Los op: 6x + 28 = 30 10x. 1.0 Voorkennis Voorbeeld 1: Los op: 6x + 28 = 30 10x. 6x + 28 = 30 10x +10x +10x 16x + 28 = 30-28 -28 16x = 2 :16 :16 x = 2 1 16 8 Stappenplan: 1) Zorg dat alles met x links van het = teken komt te staan;

Nadere informatie

ERRATUM PTA SCHOOL VOOR JONG TALENT

ERRATUM PTA SCHOOL VOOR JONG TALENT ERRATUM PTA SCHOOL VOOR JONG TALENT 4 e klas vwo 2009/2010 5 e klas vwo 2010/2011 6 e klas vwo 2011/2012 Dit erratum bevat wijzigingen met betrekking tot het Programma Toetsing en Afsluiting van bovenstaande

Nadere informatie

2 Differentiaal- en integraalrekening - Peter Bueken

2 Differentiaal- en integraalrekening - Peter Bueken Ü Ø Ï Ø Ò ÔÔ Ò ÒÁÒ ÓÖÑ Ø ÀÓ Ö Ú ÖØ ÓÓÐ ÒØÛ ÖÔ Ò ÇÒ ÖÛ Ò Ö ÒØ Ð¹ Ò ÒØ Ö ÐÖ Ò Ò È Ø Ö Ù Ò HZS-OE5-NW4 Eerste jaar Bachelor Nautische Wetenschappen Versie.4 4 maart 29 2 Differentiaal- en integraalrekening

Nadere informatie

Handleiding. ict pilot Getal & Ruimte havo B algebraïsche vaardigheden

Handleiding. ict pilot Getal & Ruimte havo B algebraïsche vaardigheden Handleiding ict pilot Getal & Ruimte havo B algebraïsche vaardigheden Inhoud: 1. Aanmelden 2. Hoe werk je met de applets? a. Navigatie b. Soorten applets c. Tips bij het gebruik 3. Hoe werkt het leerlingvolgsysteem?

Nadere informatie

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014

Wiskundige Technieken 1 Uitwerkingen Tentamen 3 november 2014 Wiskundige Technieken Uitwerkingen Tentamen 3 november 0 Normering voor pt vragen andere vragen naar rato): pt 3pt pt pt 0pt goed begrepen én goed uitgevoerd, eventueel met enkele onbelangrijke rekenfoutjes

Nadere informatie

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen

Referentieniveaus uitgelegd. 1S - rekenen Vaardigheden referentieniveau 1S rekenen. 1F - rekenen Vaardigheden referentieniveau 1F rekenen Referentieniveaus uitgelegd De beschrijvingen zijn gebaseerd op het Referentiekader taal en rekenen'. In 'Referentieniveaus uitgelegd' zijn de niveaus voor de verschillende sectoren goed zichtbaar. Door

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN

TECHNISCHE UNIVERSITEIT EINDHOVEN TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit der Wiskunde en Informatica Tentamen van Calculus voor het schakelprogramma van B (XB03) op woensdag 0 april 03, 9:00-:00 uur De uitwerkingen van de opgaven

Nadere informatie

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814.

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. STAATSCOURANT Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. Nr. 7228 14 maart 2014 Regeling van de Staatssecretaris van Onderwijs, Cultuur en Wetenschap van 22 februari 2014, nr. VO/599178,

Nadere informatie

Paragraaf K.1 : Substitutiemethode

Paragraaf K.1 : Substitutiemethode Hoofdstuk K Voortgezette Integraalrekening (V5 Wis B) Pagina van 8 Paragraaf K. : Substitutiemethode Stappenplan voor de substitutiemethode : () Neem y = formule (bij kettingregel noem je deze formule

Nadere informatie

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld.

toelatingsexamen-geneeskunde.be Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Wiskunde juli 2009 Laatste aanpassing: 29 juli 2009. Gebaseerd op nota s tijdens het examen, daarom worden niet altijd antwoordmogelijkheden vermeld. Vraag 1 Wat is de top van deze parabool 2 2. Vraag

Nadere informatie

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C

WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS LOTHAR PAPULA. deel 2. 2e druk ACADEMIC 5 E R V I C WISKUNDE VOOR HET HOGER TECHNISCH OIMDERWUS deel 2 LOTHAR PAPULA 2e druk > ACADEMIC 5 E R V I C Inhoud 1 Lineaire algebra 1 1.1 Vectoren I 1.2 Matrices 4 1.2.1 Een inleidend voorbeeld 4 1.2.2 Definitie

Nadere informatie

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde

Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde Korte handleiding Maple, bestemd voor gebruik bij de cursus Wiskunde 3 voor B. Functies van twee variabelen.. Een functie fx, y) van twee variabelen kan analoog aan een functie van één variabele in Maple

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica. Tentamen Calculus C (2WCB1) op zaterdag 25 januari 2014, 9:00 12:00 uur TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Calculus C (WCB) op zaterdag 5 januari 04, 9:00 :00 uur Maak dit vel los van de rest van het tentamen. Vul uw naam etc. in op

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville.

Analyse I. 2. Formuleer en bewijs de formule van Taylor voor een functie f : R R. Stel de formules op voor de resttermen van Lagrange en Liouville. Academiejaar 006-007 1ste semester februari 007 Analyse I 1. Toon aan dat elke begrensde rij een convergente deelrij heeft. Geef de definitie van een Cauchy rij, en toon aan dat elke Cauchy rij begrensd

Nadere informatie

H. 8 Kwadratische vergelijking / kwadratische functie

H. 8 Kwadratische vergelijking / kwadratische functie H. 8 Kwadratische vergelijking / kwadratische functie 8. Kwadratische vergelijking Een kwadratische vergelijking (of e graadsvergelijking) is een vergelijking van de vorm: a b c + + = Ook wordt een kwadratische

Nadere informatie

Basiskennistoets wiskunde

Basiskennistoets wiskunde Lkr.: R. De Wever Geen rekendoos toegelaten Basiskennistoets wiskunde Klas: 6 WEWI 1 september 015 0 Vraag 1: Een lokaal extremum (minimum of maximum) wordt bereikt door een functie wanneer de eerste afgeleide

Nadere informatie

Jan van de Craats en Rob Bosch BASISWISKUNDE. Een oefenboek voor havo, vwo, hbo en universiteit. Oosterhout, Breda, 2004

Jan van de Craats en Rob Bosch BASISWISKUNDE. Een oefenboek voor havo, vwo, hbo en universiteit. Oosterhout, Breda, 2004 Jan van de Craats en Rob Bosch BASISWISKUNDE Een oefenboek voor havo, vwo, hbo en universiteit O Oosterhout, Breda, 4 voorlopige versie, 6 februari 5 Prof.dr. J. van de Craats is hoogleraar in de wiskunde

Nadere informatie