Hoofdstuk 1 Lineaire en exponentiële verbanden

Maat: px
Weergave met pagina beginnen:

Download "Hoofdstuk 1 Lineaire en exponentiële verbanden"

Transcriptie

1 Hoofsuk Lineaire en exponeniële veranen lazije A: Geen lineair veran, als x me oeneem, neem y nie sees me ezelfe waare oe. B: Lineair veran, als x me oeneem, neem y sees me, oe. C: Geen lineair veran, als x me oeneem, neem y nie sees me ezelfe waare af. a p q 9 0 Bij een oename van p me, neem q me oe. p = : q = + =, p = : q = 0 + =, Als me oeneem, neem N me = oe. = : N = 00 + = 900 N neem oe me = neem us oe me =, o = +, =,. a e f Ja, voor elke m gas kom er een vas erag ij. Ja, per ijseenhei kom er eenzelfe afsan ij. Nee, e seen val sees sneller. Nee, e huurprijs wor sees me eenzelfe faor vermenigvulig. Ja, e omrek is vier keer e zije. Nee, e verhoging van e porokosen gaa nie per gram. lazije a e f He waer wor sees me hezelfe aanal liers per uur afgevoer. In uur wor er 0 m afgevoer. Di is 0 m per uur. Dus 0 m per pomp per uur. 0 = uur. Dus na + = uur, i is uur en 0 minuen. 0 He zwema heef e vorm van een alk. Na uur is er nog = 00 m over. De oppervlake van he a is 0 = 0 m. De waerhooge is 00 : 0 = m =, m. Bij 0 m hoog zi er, 0 = 0 m waer in he zwema. Er is us na = 0 nog = 0 m weggepomp. 0 : 0 =,. Dus na, uur is e waerhooge 0 m. Noorhoff Uigevers v

2 Moerne Wiskune Uiwerkingen ij vwo C eel Hoofsuk Lineaire en exponeniële veranen a De rekening gaa omhoog me een vas erag per kwh., 0, He verruik is = 00 kwh. 0 He prijsvershil ussen Buge en Sanaar is 09 per kwh en, voor he vasreh., Sanaar is ij een verruik van meer an = 99, kwh vooreliger an Buge. 09 He prijsvershil ussen Plus en Sanaar is 00 per kwh en, voor he vasreh., Plus is ij een verruik van meer an = 09 kwh vooreliger an Sanaar. 00 Enkelarief:, = 0 euro Laag- en normaal arief:, = 9,0 euro Ze kan us eer oversappen. lazije a v + 90g =, v =, 09g v =, 90g, 09g =, 90g 0g = 9, g 9, 9 v =, 09g ; g = 9,9 v =, 09 9, 9, ; us, e =, + 9g a q = + p q = p ; q neem me 0 oe als p me oeneem. q = p + q = p + 0 ; q neem me oe als p me oeneem. q = 0 p q =, p ; q neem me, oe (of neem me, af) als p me oeneem. q = p q = p q = p ; q neem me oe als p me oeneem. a = , = 90 +, 9 +, = 90 +,, = 9, ; na ruim jaar is Ieman goekoper. Noorhoff Uigevers v

3 Moerne Wiskune Uiwerkingen ij vwo C eel Hoofsuk Lineaire en exponeniële veranen lazije 9a + 9 =, 0 + = 0 =, 00 a = + a 0a = a =, + x +, = 9, 9 + x, x =, 0 x = 0a % BTW, alle eragen moeen keer,0. Vasreh wor,0, =, euro. Berag per m wor,0 (, + ) =,0 euro., a +, =,, a = 9, a = 9 ; us ij een verruik van 9 m. Berag per m voor he verruik oven e 00 m is,0, =, euro. Voor 90 m moe je us, 00 +, + 90, =,9 euro ealen. B =, 00 +, +, ( a 00) B =, +, ( a 00) a SV = 0 + SV =, 9 GV = 0 +, 0 = 9 SV = 9 + = 9, 0 0 = GV + GV = 0 = K +, 0 K =, 0 = 00 SV = ( K +, V) + SV = K + V + a = ; = en = lazije A: Ja, er wor nie sees me hezelfe geal vermenigvulig. B: Ja, als x me oeneem wor y me vermenigvulig. C: Nee, er wor nie sees me hezelfe geal vermenigvulig. Noorhoff Uigevers v

4 Moerne Wiskune Uiwerkingen ij vwo C eel Hoofsuk Lineaire en exponeniële veranen a p neem van o me oe. Bij p = is q =. Bij p = is q =,,, = p = us q =, = 9 p = 9 us q =, = p = us q =, = 09, p = us q = :, =, p 9 0 q, 9 09, a He aanal auo s neem nie oe me een vas aanal per jaar. He aanal neem oe me een vas perenage. De oename is me,%, e faor is us,0. 00:, miljoen :,0, miljoen. 009:, miljoen,0, miljoen lazije a Nee, i is een kwaraish veran. Nee, i is een lineair veran wan er kom een vas erag ij. Ja, he erag wor elk jaar me e faor,0 vermenigvulig. Ja, per perioe van maanen wor he aanal me e faor vermenigvulig. a Groei me een vas perenage, us exponeniële groei. 99:, miljoen; 9: 9, miljoen De groeifaor per 9 jaar is us,, 90. De groeifaor per jaar is us 9, 9, 90, 0. He aanal in 00 is an,0, miljoen. Dus meer an 0 miljoen., -: g =, 0 us een groei me,%.,, -: g =, us een groei me,%.,, -: g =, 090 us een groei me 9,0%., Gemiel is i (, +, + 9,0) : =,%. De groeifaor is,00. Di geef voor 99 volgens eze groei 9,,00 =, miljoen passagiers. Di is miljoen meer an he werkelijke aanal. Noorhoff Uigevers v

5 Moerne Wiskune Uiwerkingen ij vwo C eel Hoofsuk Lineaire en exponeniële veranen lazije a De groei is jaarlijks me een vas perenage. 00% + % = 0% 0 : 00 =, 00; e groeifaor is us,00. N =,, 00 In 00 is = en is N =,, 00,. In 00 zijn er volgens e formule zo n, miljoen alleensaanen. e In 990 is = en is N =,, 00,. In 990 waren er volgens e formule ongeveer, miljoen alleensaanen. a Op gron van eze gegevens kun je i nie vassellen. Exponeniële groei wan he aanal groei jaarlijks me eenzelfe perenage. De groeifaor per jaar is,., De groeifaor per jaar is ( ), 00,. Op = 0 is N=, e groeifaor is,00 us N =, 00. e In 00 is = en is N =, 00,. In 00 zijn er volgens e formule ongeveer, miljoen huishouens. 9a 00% + % = 0%; e groeifaor is 0 =, % % = %; e groeifaor is = % + 0% = 00%; e groeifaor is =, , 00% % = 99,%; e groeifaor is = e 00% = 00%; e groeifaor is 00 =. 00 lazije 9 0a = , a 00% +,% = 0,%; e groeifaor is,0. De groeifaor per half uur is,; e groeifaor per uur is, =,. De groeifaor per kwarier is 9; e groeifaor per uur is 9., De groeifaor per, uur is ; e groeifaor per uur is 00. a g = =, ; N = 000, 000 g = 9 ; N = g = 99 ; N = , De groeifaor per, jaar is ; us g =, 00 per jaar; N = 0, 0 Noorhoff Uigevers v

6 Moerne Wiskune Uiwerkingen ij vwo C eel Hoofsuk Lineaire en exponeniële veranen a De groeifaor per maan is,0. De groeifaor per jaar is, 0, 99. De oename is 9,9% per jaar. 0 De groeifaor per 0 jaar is. De groeifaor per jaar is 99. De afname is,0% per jaar. 0 De groeifaor per 00 jaar is. De groeifaor per 0 jaar is 0 De oename is,% per ien jaar. a, 0, 0, 0 9,, 9, ;, ;, ; ; 9; 9 0,,,,, 9 De groeifaor per 0 seonen is. De groeifaor per 0 seonen 0 is 0 0,. De afname is,% per 0 seonen. Los e vergelijkingen = 0 en 0 99 = 0 op. Di kan me e rekenmahine: Y= 0 990^X Y = 0 99^X Y = 0 De oörinaen van e snijpunen zijn (,9; 0) en (,; 0). He ijsvershil is,,9 = 9, seonen. Of me logarimen: = = = 99 = = log, = log, 9 lazije 0 a In e linker figuur zie je a e grafiek he snels sijg ussen uur en uur. Om uur heef he saafje in e reher figuur e groose posiieve waare. De emperauur is us ussen uur en uur he serks gesegen. Om uur is e emperauur + = C. Om 9 uur is e emperauur + = C. a Er is een oename van 0 00, lier per ag. 0 De groeifaor per 0 jaar is 0 =, De groeifaor per jaar is,, 00. Dus een oename van % per jaar. In 90 was he nie-huishouelijk verruik 00 = miljar lier per ag. In 90 was he = miljar lier. He perenage nie-huishouelijk verruik in 90 was 00% 9, %. 00 He perenage nie-huishouelijk verruik in 90 was 00% 9 %. 0 He perenage is in 90 hoger. Noorhoff Uigevers v 9

7 Moerne Wiskune Uiwerkingen ij vwo C eel Hoofsuk Lineaire en exponeniële veranen a = 0: C = = = : C = 0 + 9, 0 00 Daling van e emperauur per minuen is C. De aling per minuu is us C. = : C,0 00, 00 =,00 : C = 0 + 9, 09 9 C, 09 9, 0 00 = = =, Op = aal e emperauur ongeveer me C per minuu. lazije a De afsan s neem nie meer oe. Na seonen heef e auo ongeveer 0 meer (of meer) afgeleg. Gemiel is i us 0 : = meer per seone. (of : = meer per seone). He hellingsgeal van e raaklijn is ongeveer. De snelhei is us ongeveer meer per seone. = 0: s =, = 0 = 00: s =, = s = 9, 99. De snelhei op he momen van remmen is ongeveer, 0 m/s. e afsan in meers ij in seonen 00 De snelhei ij he remmen is us 0 km per uur. 9a = : N = 0,, 0, 00 =, 00: N = 0,, N 9 = = 9, ; De helling in = is 9,. 00 Neem voor e venserinselling: Xmin= 0; Xmax =, Ymin = 0 en Ymax = Noorhoff Uigevers v

8 Moerne Wiskune Uiwerkingen ij vwo C eel Hoofsuk Lineaire en exponeniële veranen Bereken he snijpun van e grafiek van e hellingen me e lijn Y = 000 me je rekenmahine. De oörinaen van he snijpun zijn (0; 000). Dus voor = is e helling gelijk aan a Oplossen van e vergelijking = me e rekenmahine oor he snijpun e erekenen van e grafieken ij e formules Y = 0X^ + 0 en Y = 0 + 0X X =,0; us na,0 0 = agen of = = 0 ( 0 + 0) = 0 = 0 of = 0 0 = 0;,0,0 0 = agen De funie van e reee is een lineaire funie me hellingsgeal 0. He hou krimp in e reee me een onsane snelhei van 0 m per maan. L( ) = = 9, 9 L(, 00) = 0, , 9 L = = 0 ; In e lenge krimp he hou me 0 m per maan. 00 Oma 0 < 00 is e krimp in e reee sneller an ie in e lenge. Y = 0X^ + 0 en Y = nderiv (Y, X, X) Zoek in e ael voor welke waare van X gel a Y = 0 Di is voor X =,;, 0 =, Op e e ag is e krimp in e lenge gelijk aan e krimp in e reee. lazije a De afname is exponenieel wan he gaa me een vas perenage. De afname is me %, e groeifaor is us 9. P = 00 op = 0 us P = mei 00 na januari 00 is + + = maanen, us =. P = 00 9, 9 Dus op mei 00 is volgens e formule ongeveer % van e munen Neerlans. De groeifaor per maanen is 0. De groeifaor per maan is 0 9. De afname is us,% gewees. Noorhoff Uigevers v

9 Moerne Wiskune Uiwerkingen ij vwo C eel Hoofsuk Lineaire en exponeniële veranen a De oename per wee jaar is 00. De oename in jaar is us 00 = 000 Di eeken a he aanal in 000 us = 00 zou moeen zijn. De groeifaor per wee jaar is. De groeifaor per jaar is,. De we van Moore is A = 00 me in ijseenheen van jaar en = 0 in 9 (of A = 00, me in ijseenheen van jaar en = 0 in 9). Deze formule invoeren op e rekenmahine en een ael maken geef: jaar ype hip 0 Pen I Pen II Pen III Penium aanal ransisors Invoeren op e rekenmahine Y= 00 ^X en Y = Snijpun voor X =,, =, jaar, i is us in he jaar 009 of: 00 = = = log ,, =, jaar, i is us in he jaar 00. lazije a Bij een ph van, en een oename van KH me, neem C oe me,. Dus ij KH = is C=, +, = of Bij een ph van, en KH = is C = 9. KH en C zijn evenreig us als KH = an is C = 9 =. Een afname van 90% eeken groeifaor. Voor KH = en ph = is C = 0 ph =, is C = 0, ph =, is C = 0,, ph =, is C = 0, ph =, is C = 0, 0 ph =,0 is C = 0 =, ph =, en KH = voloen aan e voorwaaren. KH = en ph = geef C = 0 0 = 0., KH = en ph =, geefc = 0 =,. Aan alle rie e voorwaaren is volaan. lazije T-a Sees ezelfe sijging van e emperauur per 00 meer. 0 meer iep eeken a e emperauur sijg me, = C. De emperauur is an + =, C. Een sijging van C, us een iepe van : 00 = meer. Noorhoff Uigevers v

10 Moerne Wiskune Uiwerkingen ij vwo C eel Hoofsuk Lineaire en exponeniële veranen T-a v + m =, ( 0) v + m = v = m m + m = 0m + m = m = m = v = m us v = = Deze eselling esaa ui lier magere melk en lier volle melk. T-a Vanaf 9 is e afname proenueel. miljoen is e helf van miljoen en e halvering per jaar geef a in 00 e hoeveelhei haring opnieuw gehalveer is o in i geval miljoen on. De groeifaor per rie jaar is 0. In 99 was e hoeveelhei gelijk aan,,0 = 999, us ongeveer miljoen on. 9, e afname is ongeveer %. e De hoeveelhei in 9 was us, 9, miljoen on. lazije T-a De groeifaor per jaar is 90 0 N = 0 9 me = 0 in De groeifaor per jaar is 9. N = 0 9 me = 0 in 990. De groeifaor per jaar is,0; e groeifaor per jaar is,0,. P =, me = 0 op januari 00. T-a He is exponeniële groei me een groeifaor groer an. De grafiek ij e formule is us een sees sneller sijgene grafiek. = : P =, 9, = : P =, 9, P, = =, 9 ; e gemiele oename is us,9. = : P =, 9,, 00 =,00: P =, 9, P... =, ; P neem us oe me een snelhei van ruim. 00 Noorhoff Uigevers v

11 Moerne Wiskune Uiwerkingen ij vwo C eel Hoofsuk Lineaire en exponeniële veranen T-a De groeifaor per weken is 00. De groeifaor per week is ,. De oename in 0 weken is gram. De oename per week is : 0 =, gram us a =,. Op = 0 is F = 0, = 9 us = 9. Je moe hier oplossen wanneer G F = 000. Invoeren op e rekenmahine: Y = 0 ^(X,) (X ) Y = 000 Venser inselling: Xmin = Xmax = Ymin = Ymax = 000 Snijpun voor X =,. Dus na, agen. Noorhoff Uigevers v

Hoofdstuk 3 - Exponentiële functies

Hoofdstuk 3 - Exponentiële functies Hoofsuk - Eponeniële funies lazije 7 V-a hooge in m 7, 8 8, 9 ij in uren 9, Aangezien e punen op een rehe lijn liggen, noemen we eze groei lineair. Als je e rehe lijn naar links voorze, an kun je aflezen

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaarigheen a lazije 5 5, 9 B B 6 5 5 f a a e r 9 9r r r r 5 8 5 5 a De rihingsoëffiiën van e lijn is gelijk aan 5 en he sargeal is 5, us 7 0 e vergelijking is y x+ 5. De rihingsoëffiiën van e lijn

Nadere informatie

Vaardigheden. bladzijde 174. De toename per jaar is = 102, = dus de toename per 100 jaar is De toename per jaar is.

Vaardigheden. bladzijde 174. De toename per jaar is = 102, = dus de toename per 100 jaar is De toename per jaar is. Vaarigheen lazije 74 00 440 De oename per jaar is = 0, 00 99 ij in jaren 990 000 00 00 00 aanal 440 7,, 00 De oename per jaar is 609900 00 000 700 89 ij in jaren 700 800 900 997 000 aanal 00 00 48 000

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a V-2a V-a Hoofsuk 6 - Proenuele groei Voorkennis Een lenge van 1 meer 5 is een lenge van 15 m. hooge in m 6 1 15 lenge shauw in m 9 1,5 225 De shauw van Henk als hij rehop saa is 225 m ofewel 2,25

Nadere informatie

Hoofdstuk 3 Exponentiële functies

Hoofdstuk 3 Exponentiële functies Havo B deel Uiwerkingen Moderne wiskunde Hoofdsuk Eponeniële funies ladzijde 6 V-a Door zih in weeën e delen vermenigvuldig he aanal aeriën per ijdseenheid zih seeds me een faor is de eginhoeveelheid,

Nadere informatie

Overzicht Examenstof Wiskunde A

Overzicht Examenstof Wiskunde A Oefenoes ij hoofdsuk en Overzih Examensof Wiskunde A a X min 0, X max 0, Y min 0 en Y max 000. 0 lier per minuu. Als de ank leeg is, dan is W 0, dus 00 0 0 dus 0. Na 0 minuen is de ank leeg. a Neem de

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden 6 Blok - Vaardigheden Blok - Vaardigheden Exra oefening - Basis B-a Bij abel A zijn de facoren achereenvolgens 8 : = 6 ; 08 : 8 = 6 en 68 : 08 = 6. Bij abel A is sprake van exponeniële groei. Bij abel

Nadere informatie

4e Het absolute maximum is 3 (voor x = 1). 4c De grafiek is afnemend dalend op 2, 3. 4f Er is een minimum voor x = 3. Dit minimum is 0.

4e Het absolute maximum is 3 (voor x = 1). 4c De grafiek is afnemend dalend op 2, 3. 4f Er is een minimum voor x = 3. Dit minimum is 0. G&R vwo A/C eel C. von Schwarzenberg 1/16 1a 1b 1c Da was begin 00. Er waren oen 140000 banen. Toename van 10000 naar 140000, us een oename van 0000 banen. Vóór juli 1998 is e oename oenemen (e oename

Nadere informatie

Hoofdstuk 6 - Formules maken

Hoofdstuk 6 - Formules maken Hoofdsuk 6 - Formules maken ladzijde 0 V-a Formule, wan de grafiek gaa door he pun (,) 0 en formule is exponenieel. Formule heef voor x = 0 geen eekenis, erwijl de grafiek door he pun (0, 3) gaa. Formule,

Nadere informatie

Hoofdstuk 7 - Veranderingen

Hoofdstuk 7 - Veranderingen Moerne wiskune 9e eiie Havo A eel Hoofsuk 7 - Veraneringen lazije 68 V-a Op zijn eriene was Jos 7 m en op zijn waalfe. Zijn lenge nam us 7 m oe. Dorri haar lenge nam oe van 5 naar 55, us 5 m. De grafiek

Nadere informatie

Hoofdstuk 2 - Formules voor groei

Hoofdstuk 2 - Formules voor groei Moderne wiskunde 9e ediie Havo A deel Uiwerkingen Hoofdsuk - Formules voor groei bladzijde 00 V-a = 08, ; 870 08, ; 70 0, 8; 60 00 00 870 70 08,, gemiddeld 0,8 b De beginhoeveelheid is 00 en de groeifacor

Nadere informatie

Blok 3 - Vaardigheden

Blok 3 - Vaardigheden Blok - Vaarigheen Moerne wiskune 9e eiie vwo B eel lazije 78 a Elke uur wor een hoeveelhei vermenigvulig me,09 Na uur is er, 09 Na ag = = uur is er (, 09), 09, 09 De groeifaor per ag is, 09, 9 De groeifaor

Nadere informatie

Hoofdstuk 3 - Exponentiële functies

Hoofdstuk 3 - Exponentiële functies Hoofdsuk - Eponeniële funcies Voorkennis: Groeifacoren ladzijde 7 V-a 060, 80 8, - euro 079, 0, 9, 88 c 0, 98, - 998, V-a De facor waarmee je de oude prijs vermenigvuldig om de nieuwe prijs e krijgen is

Nadere informatie

C. von Schwartzenberg 1/11

C. von Schwartzenberg 1/11 G&R havo A deel C von Schwarzenberg 1/11 1a m 18:00 uur He verbruik was oen ongeveer 1150 kwh 1b Minimaal ongeveer 7750 kwh (100%), maimaal ongeveer 1150 kwh (145,%) Een oename van ongeveer 45,% 1c 1d

Nadere informatie

Hoofdstuk 1 - Exponentiële formules

Hoofdstuk 1 - Exponentiële formules V-1a 4 Hoofdsuk 1 - Exponeniële formules Hoofdsuk 1 - Exponeniële formules Voorkennis prijs in euro s 70 78,0 percenage 100 119 1,19 b Je moe de prijs me he geal 1,19 vermenigvuldigen. c De BTW op de fies

Nadere informatie

Hoofdstuk 3 - De afgeleide functie

Hoofdstuk 3 - De afgeleide functie ladzijde 7 V-a Plo de grafiek van y = x + x +. Me al-zero vind je x 8,. Plo ook de grafiek me y = x+ 5. Me al-inerse vind je x 89, en y= g( 89, ),. V-a d Exa, wan de vergelijking is lineair. Me de rekenmahine,

Nadere informatie

Hoofdstuk 7 - Logaritmische functies

Hoofdstuk 7 - Logaritmische functies Hoodsuk 7 - Logarimishe unies ladzijde 0 V-a De dagwaarde egin op 000 en daal naar 000. Dus: 000 g 000 = = 06 ; g = 000 06 0 909. = 000 g ; Op ijdsip = 0 is de dagwaarde 000. De groeiaor g 0 909 dus W

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a Blok - Vaardigheden ladzijde d 9 B B 6 f a a e r 9 9r r r r 8 a De rihingsoëffiiën van de lijn is gelijk aan en he sargeal is dus 7 0 de vergelijking is y x+ De rihingsoëffiiën van de lijn is gelijk

Nadere informatie

op het interval 5, 15 betekent 5 x 15. 4b x op het interval 6, 10 betekent 6 x < 10. 5d Bij 3 < x π hoort het interval 3, π

op het interval 5, 15 betekent 5 x 15. 4b x op het interval 6, 10 betekent 6 x < 10. 5d Bij 3 < x π hoort het interval 3, π G&R havo B deel Veranderingen C. von Schwarzenberg / a b c Tussen en uur. Van en uur neem de sijging oe. Van o 6 uur neem de sijging af. Van o 8 uur neem de daling oe. Van 8 o uur neem de daling af. 6,,,,,

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 0 Voorkennis: Differentiëren en rekenregels lazije 0 V-a h ( ) 0 f () t 6 t + t 0 t + t n () t t t 7 t 6t e k ( p) p p + 0 0p 7 p g ( ) + 08 V-a f( ) ( + ) 6 f ( ) 6 h ( ) ( + 9) 8 gt () tt ( + t ) t +

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofstuk 6 - Nieuwe grafieken Hoofstuk 6 - Nieuwe grafieken Voorkennis V-a Van lijn k is het hellingsgetal en het startgetal en e formule is = +. Van lijn l is het hellingsgetal en het startgetal en e

Nadere informatie

C. von Schwartzenberg 1/8. 1b Bij situatie II is er sprake van een evenredig verband. bij p = 12,50 hoort q = 6500. W is evenredig met S,

C. von Schwartzenberg 1/8. 1b Bij situatie II is er sprake van een evenredig verband. bij p = 12,50 hoort q = 6500. W is evenredig met S, G&R havo A eel C vo Schwarzeberg 1/8 1a Bij I wor y vier keer zo klei (us he viere eel) ; bij II wor y (precies als ) ook vier keer zo groo 1b Bij siuaie II is er sprake va ee evereig verba a (rech)evereig

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 4 Voorkennis V-1 a De oörinaten zijn A( 2, 1), B(2, 3) en C(5, 4 Qw ). V-2 a Per stap van 1 naar rehts gaat e lijn Qw omhoog. Vanuit C ga je 7 stappen naar rehts en us 7 Qw = 3 Qw omhoog. Omat 4 Qw + 3

Nadere informatie

Blok 3 - Vaardigheden

Blok 3 - Vaardigheden Moerne wiskune 9e eitie Havo A eel Blok 3 - Vaarigheen lazije 19 1a 1, 3 3000 = 8900 = 8310, 0, 07 000000 = 8000 = 810, 300 1700 = 6870000 = 6910, 8 0, 000 0, 007 = 0, 000001 = 1, 10 6 e 6344, 1 781, 98

Nadere informatie

Ze krijgt 60% korting op het basisbedrag van 1000,- (jaarpremie) en moet dan 400,- (jaarpremie) betalen.

Ze krijgt 60% korting op het basisbedrag van 1000,- (jaarpremie) en moet dan 400,- (jaarpremie) betalen. 1a 1b G&R havo A deel 1 Tabellen en grafieken C. von Schwarzenberg 1/14 Een buspakje kan door de brievenbus, een pakke nie. Een zending die voorrang krijg. 1c 5, 40. (Worldpack Basic prioriy Buien Europa

Nadere informatie

Antwoordmodel VWO wa II. Speelgoedfabriek

Antwoordmodel VWO wa II. Speelgoedfabriek Anwoordmodel VWO wa 00-II Anwoorden Speelgoedfabriek Voorwaarde II hoor bij immeren Voor immeren zijn 60x + 40y minuen nodig Voor immeren zijn 80 uur dus 4800 minuen beschikbaar 60x + 40y 4800 kom overeen

Nadere informatie

Oefeningen Elektriciteit I Deel Ia

Oefeningen Elektriciteit I Deel Ia Oefeningen Elekriciei I Deel Ia Di documen beva opgaven die aansluien bij de cursuseks Elekriciei I deel Ia ui he jaarprogramma van de e kandidauur Indusrieel Ingenieur KaHo Sin-Lieven.. De elekrische

Nadere informatie

Hoofdstuk 12B - Breuken en functies

Hoofdstuk 12B - Breuken en functies Hoofstuk B - Breuken en funties Voorkennis V-a g V-a h 0 0 i 9 j 0 0 0 9 0 9 e k 0 f l 9 9 Elk stukje wort : 0 0, meter. a 0 0 0 00 L 0, 0, 0,0 0,0 0,0 De lengte van elk stukje wort an twee keer zo klein.

Nadere informatie

Cursus BCO. Houten elementen. De Nayer, cursus BCO 15/09/2010

Cursus BCO. Houten elementen. De Nayer, cursus BCO 15/09/2010 Cursus Houen elemenen De Nayer, cursus 15/09/2010 Luc Schuereman/Lincy Pyl www.era-branveilighei.be Rekenregels voor houen elemenen EN1995-1-21 emperauursverloop in een warsoorsnee: gerelaeer aan he proces

Nadere informatie

Extra oefening bij hoofdstuk 1

Extra oefening bij hoofdstuk 1 Era oefening ij hoofdsuk a Een goede venserinselling voor de funie f is : X min en X ma en Y min eny ma 0. Voor de funie g X min 0 en X ma 0 en Y min 0 eny ma 0. y 0 8 8 0 y 0 0 0 0 0 0 0 0 0 0 0 0 0 Veriale

Nadere informatie

Hoofdstuk 7 Exponentiële formules

Hoofdstuk 7 Exponentiële formules Opstap Mahten en proenten O-1a 7 4 2401 ( 12) 5 248 832 8 4 4096 10 6 1 000 000 e 1 9 1 f 11 3 1331 g 3 5 243 h ( 3) 5 243 O-2a 620 000 6,2 10 5 43 000 000 4,3 10 7 0,000 12 1,2 10 4 8 000 000 000 8 10

Nadere informatie

Blok 4 - Vaardigheden

Blok 4 - Vaardigheden Havo B deel Uiwerkingen Moderne wiskunde Blok - Vaardigheden bladzijde a domein en bereik b x = = = c Me behulp van onderdeel b en de grafiek: d Eers: log x = ofwel x = = Dan me behulp van de grafiek:

Nadere informatie

Hoofdstuk 4 De afgeleide

Hoofdstuk 4 De afgeleide Havo B eel Uitwerkingen Moerne wiskune Hoofstuk De afgeleie lazije 9 V-a 8 8 8 kg Lengte in m Gewiht in kg 8 7 8 9 8 gewiht 8 8 lengte m weegt 8 kg us m weegt 8 : 8 kg. e 8 m 8 8 is het startgetal en 8

Nadere informatie

Hoofdstuk 11: Groei 11.1 Exponenti 0 5le groei Opgave 1: Opgave 2: Opgave 3:

Hoofdstuk 11: Groei 11.1 Exponenti 0 5le groei Opgave 1: Opgave 2: Opgave 3: Hoofdsuk : Groei. Eponeni 0 le groei Opgave : a. 60 7 70 7 800 miljoen b., c. 980: N 7 00 7, 7 900 miljoen o 990: N 7 00 7, 7 0 miljoen o 900 7 00 d. klop nie, per 0 jaar is de oename: 700% 7 % 00 Opgave

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Blok - Vaarigheen lazije 0 a g h, p, p i p 0 p e q q q q q f 0 a a 0a a t t t t t t a Per weken is e groeifator,, 9 Een kwartaal heeft : weken. De groeifator per kwartaal is us, 990,. Een ag is -week,

Nadere informatie

Examen VWO. Wiskunde B1 (nieuwe stijl)

Examen VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 83 punen e behalen; he examen besaa ui 20 vragen. Voor

Nadere informatie

Uitwerkingen H14 Algebraïsche vaardigheden 1a. x = 6 2 = 4 en y = 9,60 5 = 4,60

Uitwerkingen H14 Algebraïsche vaardigheden 1a. x = 6 2 = 4 en y = 9,60 5 = 4,60 Uiwerkingen H Algebraïsche vaardigheden = 6 = en y = 9,60 5 =,60 Voor km een bedrag van,60 euro Per km dus een bedrag van,5 euro. Da is he quoiën van y en. Bij km zijn de kosen 5 euro dus bij 0 km zijn

Nadere informatie

Hoofdstuk 11A - Rekenen

Hoofdstuk 11A - Rekenen Voorkennis V- aantal grammen 000 00 aantal euro s 6,0 0,006, Je moet e, etalen. V-a aantal m 00 aantal euro s 4 000 6 V-a Hij moet e 6.,- etalen. aantal m 00 0,00 aantal euro s 4 000 6 6 Hij krijgt m mortel

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de funcie f : R R : 7 cos(2 ). Bepaal de afgeleide van de funcie f in he pun 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D) f 0

Nadere informatie

Correctievoorschrift VWO 2015

Correctievoorschrift VWO 2015 Correcievoorschrif VWO 205 ijdvak wiskunde C (pilo) He correcievoorschrif besaa ui: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Hoofdstuk 1 Grafieken en vergelijkingen

Hoofdstuk 1 Grafieken en vergelijkingen Hoofstuk 1 Grafieken en vergelijkingen Opstap Formule, grafiek en vergelijking O-1a Om uur staat het water 6 6 mm hoog in e regenmeter. aantal uren h... h 6 hoogte water aantal uren v :... v 6 hoogte water

Nadere informatie

Hoofdstuk 1 - Extra oefening

Hoofdstuk 1 - Extra oefening Hoofdsuk - Ruimefiguren Hoofdsuk - Exra oefening Een mogelijke inselling is da je de x-waarden kies van 0 o 0 en de y-waarden van 000 o 0 000. a He ereik is [ 6,; 0] He ereik word: [-6, 0 ; He ereik word:

Nadere informatie

2.4 Oppervlaktemethode

2.4 Oppervlaktemethode 2.4 Opperlakemehode Teken he --diagram an de eenparige beweging me een snelheid an 10 m/s die begin na 2 seconden en eindig na 4 seconden. De afgelegde weg is: =. (m/s) In he --diagram is de hooge an de

Nadere informatie

Hoofdstuk 11A - Rekenen

Hoofdstuk 11A - Rekenen Hoofstuk 11A - Rekenen Voorkennis V-1 aantal grammen 1000 1 00 aantal euro s 6,0 0,006 1, Je moet e 1, etalen. V-a aantal soesjes 1 1 V-a aantal ml water 100 8, 1,66 Ze heeft 1,6 ml water noig. aantal

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Bij e roe pijl hoort e aftrekking,,.,,,, V-a,, 7,,, 7, e,,,,7,, f,,, V-a Bij e roe pijlen hoort e erekening,,,,.,,,,,,,,,,, 7,,,,, V-a In eze erekening moet je eerst met, vermenigvuligen

Nadere informatie

Lineaire processen. HAVO - CM en EM

Lineaire processen. HAVO - CM en EM PERIODE STATISTIEK, COMBINATORIEK, Lineaire en Exponeniele funcies. DERDE WEEK Lineaire processen. HAVO - CM en EM Er is een duidelijk recep voor he opsellen van lineaire (rechlijnige) formules op basis

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a 4 Voorkennis De eerste us vanuit Eer vertrekt om 7.03 uur. aantal 12 1 7 perentage 100 8,33 58,33 7 van e 12 is ongeveer 58,33%. Dat is e snelus, ie stopt niet ij elke halte. In it shema stoppen 2

Nadere informatie

Hoofdstuk 6 Rekenen. Opstap Rekenen. Voor 825 gram kaas moet je 6,60 betalen.

Hoofdstuk 6 Rekenen. Opstap Rekenen. Voor 825 gram kaas moet je 6,60 betalen. Opstap Rekenen O-1a gewiht in grammen 150 1 650 erag in euro s 1,20... 5,20 Juith moet voor 650 gram kaas 5,20 etalen. gewiht in grammen 150 1 825 erag in euro s 1,20... 6,60 Voor 825 gram kaas moet je

Nadere informatie

Hoofdstuk 1 - Logaritmische functies

Hoofdstuk 1 - Logaritmische functies Hoofsuk - Lorimishe funies Moerne wiskune e eiie vwo B eel Voorkennis: Mhen en eponenen lzije 7 V-, ( ) ; 0, 7 8 8 V- e ( ) 8 8 8 8 f ( 8 8 ) : ( 8 ) 8 7 ( ) ( ) V- 7,,,,,,,, 0 ( ), ( ),, e ( ),, f 7 7,

Nadere informatie

12 mnd 18 mnd 24 mnd 30 mnd module M 0,3 0,5 0, snelheid V

12 mnd 18 mnd 24 mnd 30 mnd module M 0,3 0,5 0, snelheid V Hoofstuk 6, Verbanen combineren 1 Hoofstuk 6 Verbanen en grafieken Kern 1 tabellen en grafieken 1 a Nee, pas vanaf winkracht 9 spreekt men van storm. Bij winkracht 7 is er sprake van hare win. b Nee. Een

Nadere informatie

Hoofdstuk 5 Rekenen. Opstap Getallen en maten

Hoofdstuk 5 Rekenen. Opstap Getallen en maten Hoofstuk 5 Rekenen Opstap Getallen en maten O-1a Bij elkaar horen 10 2 en honer 10 4 en tienuizen 10 5 en honeruizen 10 6 en één miljoen 10 7 en 10 000 000 10 8 en honermiljoen 10 9 en één miljar 1000

Nadere informatie

Gebruik van condensatoren

Gebruik van condensatoren Gebruik van condensaoren He spanningsverloop ijdens he laden Als we de schakelaar s sluien laden we de condensaor op. De condensaorspanning zal oenemen volgens een exponeniële funcie en de spanning over

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2003-I

Eindexamen wiskunde A1-2 vwo 2003-I Eindexamen wiskunde A- vwo 003-I 4 Anwoordmodel Levensduur van kfiezeapparaen Maximumscore 4 Na,5 jaar zijn er 500 0,99 0,97 apparaen Na 3,5 jaar zijn er 500 0,99 0,97 0,87 apparaen He verschil hierussen

Nadere informatie

wiskunde A vwo 2015-I

wiskunde A vwo 2015-I wiskunde A vwo 05-I Diabeesrisicoes maximumscore 4 He aanal personen me verborgen diabees is binomiaal verdeeld me n = 400 en p = 0, 0 P( X 00 ) = P( X 99 ) Beschrijven hoe di me de GR berekend word De

Nadere informatie

11 Groeiprocessen. bladzijde 151 21 a A = c m 0,67 } m = 40 en A = 136. 136 = c 40 0,67 136 = c

11 Groeiprocessen. bladzijde 151 21 a A = c m 0,67 } m = 40 en A = 136. 136 = c 40 0,67 136 = c Groeiprocessen ladzijde a A = c m 7 } m = 40 en A = = c 40 7 = c, 40 0 7 c, Dus de evenredigheidsconsane is,. m = 7 geef A =, 7 7 Dus de lichaamsoppervlake is ongeveer dm. c A =, geef, m 7 =, m 7 009 m

Nadere informatie

Rekenen banken te veel voor een hypotheek?

Rekenen banken te veel voor een hypotheek? Rekenen banken e veel voor een hypoheek? J.P.A.M. Jacobs en L.A. Toolsema Me enige regelmaa word door consumenen en belangenorganisaies gesuggereerd da banken de hypoheekrene onmiddellijk naar boven aanpassen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 4 Exra oefening hoofdsuk a Invullen van a en geef B. Dus saa er, op de meer. B +, 8 +, 5 euro. c 5 +, 8a +, 5 5 + 8, a d 8, a 4 a 5 Er is 5 km afgelegd. Chauffeur X leg km in ijvooreeld minuen af. Dan

Nadere informatie

( ) 1. G&R vwo A deel 4 16 Toepassingen van de differentiaalrekening C. von Schwartzenberg 1/13 = =

( ) 1. G&R vwo A deel 4 16 Toepassingen van de differentiaalrekening C. von Schwartzenberg 1/13 = = C von Schwartzenberg 1/1 1a 1b 1c 1 1 1 4 5 4 6 4 4 5 f ( ) 6 + 6 6 + 6 6 f '( ) 4 + + 4 4 + + 4 g( ) 5 8 g '( ) 5 1 5 Onthou: y y '( ) 1 8 8 1 1 1 h + + + h'( ) 1 1 7 6 6 k ( ) ( 1) + 8 k '( ) 1( 1 )

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B,2 (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 86 punen e behalen; he examen besaa ui 9 vragen. Voor

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a V-a Hoofstuk - Getallen Voorkennis In het ontrekene stuk van e vlaai passen stukken. De hele vlaai eston uit stukken. Twee van e vijf stukken zijn verkoht, us eel van e vlaai is verkoht. Van e reuk

Nadere informatie

Dus de groeifactor per 20 jaar is 1,5 = 2,25 een toename van 125% in 20 jaar. Dus Gerben heeft geen gelijk.

Dus de groeifactor per 20 jaar is 1,5 = 2,25 een toename van 125% in 20 jaar. Dus Gerben heeft geen gelijk. G&R havo B deel Groei C. von Schwarzenber / a In 980 is N i = 0 + 0 = 800 miljoen. b Vermenivuldien me,. (iedere 0 jaar van 00% naar 0% iedere 0 jaar keer,) c In 980 is N o = = N o = = d 0% oename per

Nadere informatie

2000 loopt van t = 5 tot t = 6. De toename in 2000 is N L(6) N L(5) 69 (lepelaars).

2000 loopt van t = 5 tot t = 6. De toename in 2000 is N L(6) N L(5) 69 (lepelaars). G&R havo A deel 0 Groei C. von Schwarzenber /6 a b Na drie weken 750 + 50 = 00 (m ); na vijf weken 750 + 5 50 = 500 (m ). Na één week 6 = (m ); = = na vier weken 6 6 56 (m ). w c 750 + w 50 = 6 (inersec)

Nadere informatie

1 Inleidende begrippen

1 Inleidende begrippen 1 Inleidende begrippen 1.1 Wanneer is een pun in beweging? Leg di ui aan de hand van een figuur. Rus en beweging (blz. 19) Figuur 1.1 Een pun in beweging 1.2 Wanneer is een pun in rus? Leg di ui aan de

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correcievoorschrif VWO 009 ijdvak wiskunde A, He correcievoorschrif besaa ui: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a 4 Hoofstuk - Ruimtefiguren Voorkennis De verpakking heeft rie vershillene vormen. De ovenkant en e onerkant heen ezelfe vorm. Hetzelfe gelt voor e voorkant en e ahterkant en voor e twee zijkanten.

Nadere informatie

40 = = Kruislings vermenigvuldigen geeft 40( c + 3) = 100 c waaruit volgt dat

40 = = Kruislings vermenigvuldigen geeft 40( c + 3) = 100 c waaruit volgt dat Kern Analyse 00 ( + 0) 00 a = 0 geef S = =. We zoeken de oplossing van de vergelijking S = 85. Oplossen + 0+ 3 + 3 lever = 7. b ijd (uren) 0 3 7 7 57 percenage S 0 50 70 80 90 95 c S 80 60 40 0 O 0 0 30

Nadere informatie

Extra oefening hoofdstuk 1

Extra oefening hoofdstuk 1 Era oefening hoofdsuk a Meekundig, u = 76, r = en u 9 = ( ) =, 76 86 Meekundig, u =,, r =, en u =, ( ) = 9 c Rekenkundig, u =, v = en v = + 9 = 8 9 d Meekundig, u =, r = 98, en u = (, 98) =, 87776 e Geen

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv B-a 38 Extra oefening - Basis aantal auto s in miljoenen 0 00 90 80 70 0 50 0 30 0 0 0 30 0 50 0 70 80 90 00 0 0 tij in jaren In 975 waren er ongeveer 3, miljoen auto s. Als je e grafiek oortrekt, an krijg

Nadere informatie

Hoofdstuk 4 - Integreren

Hoofdstuk 4 - Integreren Hoofstuk - Integreren Moerne wiskune 9e eitie vwo B eel Voorkennis: Oppervlakten lazije 98 V-a BC Oppervlakte ABC Driehoek ABC is gelijkvormig met riehoek ADB us AC AB waaruit volgt at BC BD us BD BD c

Nadere informatie

Het wiskunde B1,2-examen

Het wiskunde B1,2-examen Ger Koole, Alex van den Brandhof He wiskunde B,2 examen NAW 5/4 nr. 2 juni 2003 65 Ger Koole Faculei der Exace Weenschappen, Afdeling Wiskunde, Vrije Universiei, De Boelelaan 08 a, 08 HV Amserdam koole@cs.vu.nl

Nadere informatie

UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2002-I VWO

UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 2002-I VWO UITWERKING TOELICHTING OP DE ANTWOORDEN VAN HET EXAMEN 00-I VAK: WISKUNDE A, NIVEAU: VWO EXAMEN: 00-I De uigever heef ernaar gesreefd de aueursrechen e regelen volgens de weelijke bepalingen. Degenen die

Nadere informatie

Blok 2 - Vaardigheden

Blok 2 - Vaardigheden Blok - Vaarigheen lazije a Het startgetal is en het hellingsgetal is De formule ie ij e lijn ast is y x De lijn k heeft het zelfe hellingsgetal als e lijn l, us De formule is y x+ 7 e Het hellingsgetal

Nadere informatie

Hoofdstuk 3 - Statistiek

Hoofdstuk 3 - Statistiek V-1a e Voorkennis Bij e rehter tael is het zinvol een lijniagram te tekenen, want aar zit een ontwikkeling in e tij in. De linker tael estaat uit los van elkaar staane merken en typen. aantal auto s aantal

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 110 Voorkennis V-1a Isaa maakt e zoetste limonae, want hij oet het minste water ij e siroop. Bij elk glas siroop oet hij 3,5 glazen water. Henk maakt e minst zoete limonae. Bij elk glas siroop oet hij

Nadere informatie

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af.

De oppervlakte van de rechthoek uit de vorige opgave hangt van dezelfde variabelen af. Opgve 1 Vn twee korte en twee lnge luifers is een rehthoek geleg. Omt je geen fmetingen weet hngt e omtrek vn eze rehthoek f vn twee vrielen, nmelijk lengtekorteluif er en lengtelngeluif er. Welke formule

Nadere informatie

8 a. x K (in euro s) x K (in euro s)

8 a. x K (in euro s) x K (in euro s) Hoofstuk 6 RECHTE LIJNEN 6.0 INTRO b, =, km c k = l a km kost,0: =,0 b rankje kost : =,0, us e entree is,0,0 = 0,-. Nee, als je bij e onerste lijn 8 naar rechts gaat ga je omhoog, us als je naar rechts

Nadere informatie

Antwoordmodel VWO 2002-II wiskunde A (oude stijl) Speelgoedfabriek

Antwoordmodel VWO 2002-II wiskunde A (oude stijl) Speelgoedfabriek Anwoordmodel VWO 00-II wiskunde A (oude sijl) Anwoorden Speelgoedfabriek Voorwaarde II hoor bij immeren Voor immeren zijn 60x + 40y minuen nodig Voor immeren zijn 80 uur dus 4800 minuen beschikbaar 60x

Nadere informatie

Hoofdstuk 9 - Overgangsmatrices

Hoofdstuk 9 - Overgangsmatrices lazije 232 1a Er zijn 497 auto s e Eenweg ie via het plein e Gansstraat gaan. De som e eerste kolom geeft het aantal auto s e Eenweg, us 900. De som alle getallen in e matrix is 4000, het aantal auto s

Nadere informatie

C. von Schwartzenberg 1/20. Zie de plot hiernaast. 1b Alle grafiek gaan door O (0,0) en (1;0,5). 1c 1d

C. von Schwartzenberg 1/20. Zie de plot hiernaast. 1b Alle grafiek gaan door O (0,0) en (1;0,5). 1c 1d a G&R vwo A deel 0 Allerlei uncie C. von Schwarzenber /0 Zie de plo hiernaas. b Alle raiek aan door O (0,0) en (;0,). c d De raieken van y = 0, en y = 0, komen nie onder de -as. De raieken van y = 0, en

Nadere informatie

Correctievoorschrift VWO 2014

Correctievoorschrift VWO 2014 Correcievoorschrif VWO 04 ijdvak wiskunde A (pilo) He correcievoorschrif besaa ui: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de

Nadere informatie

Overzicht. Inleiding. Classificatie. NP compleetheid. Algoritme van Johnson. Oplossing via TSP. Netwerkalgoritme. Job shop scheduling 1

Overzicht. Inleiding. Classificatie. NP compleetheid. Algoritme van Johnson. Oplossing via TSP. Netwerkalgoritme. Job shop scheduling 1 Overzich Inleiding Classificaie NP compleeheid Algorime van Johnson Oplossing via TSP Newerkalgorime Job shop scheduling 1 Inleiding Gegeven zijn Machines: M 1,,..., M m Taken: T 1, T 2,... T n Per aak

Nadere informatie

Hoofdstuk 1 - Meer variabelen

Hoofdstuk 1 - Meer variabelen Hoofstuk - Meer variaelen lazije V-a Omat het water met onstante snelhei uit e ak stroomt en e ak ilinervormig is, is e afname van e hoogte van e waterstan per tijseenhei onstant. De hoogte van e waterstan

Nadere informatie

Hoofdstuk 6 - Differentiaalvergelijkingen oplossen

Hoofdstuk 6 - Differentiaalvergelijkingen oplossen Hoofsuk 6 - Diffrniaalvrglijkingn oplossn 6 Shin van varialn lazij a, 5 (, 5) us (, 5 ), 5 us volo D kromm gaa oor (0, ) us, 5, 5 0, 5, klop H onrs l van kromm vanaf pun (, 5; 0 ) a Als j a iffrnir, an

Nadere informatie

CONCEPT WATERWERKBLAD BEREKENINGSMETHODE IN VERBAND MET WATERSLAG

CONCEPT WATERWERKBLAD BEREKENINGSMETHODE IN VERBAND MET WATERSLAG Herziening van juni 004 CONCEPT WATERWERKBLAD BEREKENINGSMETHODE IN VERBAND MET WATERSLAG WB. F DATUM: OKT 04 Aueurrehen voorbehouden Di werkbad heef berekking op de berekeningmehode in verband me waerag.

Nadere informatie

Havo A deel 1 Uitwerkingen Moderne wiskunde

Havo A deel 1 Uitwerkingen Moderne wiskunde Havo A eel Uitwerkingen Moerne wiskune Vaarigheen lazije 4 a 7 e 600 00 a 66 3 % 0 % % 5% 3 3a 80 = 4 0 80 = 8 66 = 66 = 3 6 4a Grove shatting: 0% van 500 is 00. Berekening geeft 0, 77 5 = 9, 7. Shatting:

Nadere informatie

Correctievoorschrift VWO 2014

Correctievoorschrift VWO 2014 Correcievoorschrif VWO 04 ijdvak nauurkunde He correcievoorschrif besaa ui: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Voorbeelden van lineaire eerste-orde differentiaalvergelijkingen

Voorbeelden van lineaire eerste-orde differentiaalvergelijkingen Voorbeelden van lineaire eerse-orde differeniaalvergelijkingen Hieronder vind je 8 voorbeelden waarbij een differeniaalvergelijking e behulp van he overzich wor opgelos. Opdrach Besudeer de voorbeelden

Nadere informatie

C. von Schwartzenberg 1/18. 1b Dat zijn de punten (0, 0) en (1; 0,5). Zie de plot hiernaast.

C. von Schwartzenberg 1/18. 1b Dat zijn de punten (0, 0) en (1; 0,5). Zie de plot hiernaast. a G&R havo B deel 9 Allerlei uncies C von Schwarzenber /8 Zie de plo hiernaas b Da zijn de punen (0, 0) en (; 0,5) c Van de raieken van en li een enkel pun onder de -as d De raieken van en hebben de -as

Nadere informatie

Studiekosten en andere scholings uitgaven

Studiekosten en andere scholings uitgaven bij aangife inkomsenbelasing 20 IB 266-1TFD (2576) Sudiekosen en andere scholings uigaven Volgde u in 20 een opleiding of een sudie voor uw (oekomsige) beroep? Of had u kosen voor een EVCprocedure (Erkenning

Nadere informatie

Samenvatting Natuurkunde 1 HAVO Beweging

Samenvatting Natuurkunde 1 HAVO Beweging Beweging Samenvaing Nauurkunde HAVO Eenparig rechlijnige beweging a Eenparig versnelde rechlijnige beweging a a = consan a = 0 m/s Oppervlake = v = 0 m/s Oppervlake = v v v v = consan v() = a Oppervlake

Nadere informatie

Boek: A deel 1; A deel2; A deel 3 Hoofdstukken: 3, 5, 10

Boek: A deel 1; A deel2; A deel 3 Hoofdstukken: 3, 5, 10 5 havo Wiskunde A 11 januari 2010 PTA 2 Boek: A deel 1; A deel2; A deel 3 Hoofdstukken: 3, 5, 10 Houd er rekening mee, dat aan een antwoord alleen in het algemeen geen punten worden toegekend wanneer een

Nadere informatie

Elektrificering van een (bestaande) fiets, wat globale berekeningen

Elektrificering van een (bestaande) fiets, wat globale berekeningen Elekrificerig va ee (besaae) fies, wa globale berekeige Hieroer heb ik ee algemee uileg geaa va wa berekeige ie va belag zij voor ee elekrificaie va ee fies. Voor e helerhei e uileg zij wa perceages e

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 4 Goniometrie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 4 Goniometrie De Wageningse Mehode & VWO wiskunde B Uigebreidere anwoorden Hoofdsuk Goniomerie Paragraaf Cirkelbewegingen a. De hooge van he wiel is de y-coördinaa van he hoogse pun van de grafiek, dus 80 cm b. De periode

Nadere informatie

Het dichtsbijliggende tiental is 860. interval

Het dichtsbijliggende tiental is 860. interval Rekenen Nooro Uitevers v. Aronen Bij et satten van rooteen (lente, ewit, tijsuur, ) eruik je etallen, ie een enaerin zijn van e werkelijke waare en ie ani zijn om te ontouen o om mee te rekenen. Dit zijn

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 4 les 1

Wiskunde D Online uitwerking 4 VWO blok 4 les 1 Wiskune D Online uitwerking 4 VWO blok 4 les aragraaf. Opgave a et e stelling van thagoras volgt at (, ) ( ) + ( ) ( 3 ) + ( ) + 3 3 b De roosterpunten met afstan 3 tot liggen op e cirkel met als mielpunt

Nadere informatie

1800W. 2. De klemspanning van een batterij daalt van 14,4V naar 8V bij het belasten met 100A. Hoe groot is de inwendige weerstand van de batterij?

1800W. 2. De klemspanning van een batterij daalt van 14,4V naar 8V bij het belasten met 100A. Hoe groot is de inwendige weerstand van de batterij? Basisleersof vragen: oplossingmodel. Een accu van ol lever een sroom van 50A aan een moor. Hoe groo is de weersand (impedanie) van de moor? Hoe groo is he geleverde vermogen in W en PK? Geg. Ω 4 Gevr.?

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-1a / V-2a e Voorkennis Zie e figuur hieroner. Zie e figuur hieroner. De lijn n en het punt P kunnen ook aan e anere kant van lijn l liggen. Zie e figuur hieroner. P Zie e figuur hieroven. In vierhoek

Nadere informatie

Krommen in het platte vlak

Krommen in het platte vlak Krommen in he plae vlak 1 Een komee beschrijf een baan om de zon. We brengen een assenselsel aan in he vlak van de baan van de komee, me de zon als oorsprong. Als eenheid in he assenselsel nemen we de

Nadere informatie

Lees deze bijsluiter op een rustig moment aandachtig door, ook als dit geneesmiddel al eerder aan u werd toegediend. De tekst kan gewijzigd zijn.

Lees deze bijsluiter op een rustig moment aandachtig door, ook als dit geneesmiddel al eerder aan u werd toegediend. De tekst kan gewijzigd zijn. I B2.4. Onwerp van de bijsluier voor HepBQuin Informaie voor de paiën Lees deze bijsluier op een rusig momen aandachig door, ook als di geneesmiddel al eerder aan u werd oegediend. De eks kan gewijzigd

Nadere informatie

Hoofdstuk 1: Rust en beweging

Hoofdstuk 1: Rust en beweging Hoofdsuk 1: Rus en beweging 1.1 Rus en beweging zijn relaief Ten opziche van he vlieguig is de passagier in................................................ Ten opziche van he aardoppervlak is he vlieguig

Nadere informatie