Presentatie Wiskunde Escher

Maat: px
Weergave met pagina beginnen:

Download "Presentatie Wiskunde Escher"

Transcriptie

1 Presentatie Wiskunde Escher Presentatie door M woorden 14 januari ,8 9 keer beoordeeld Vak Wiskunde Maurits Cornelis Escher Goeiemorgen! Iedereen heeft het waarschijnlijk wel eens meegemaakt: je bent naar een afbeelding aan het kijken waar er gezichtsbedrog in is verwerkt. En plots vraag je je af hoe het mogelijk is dat we deze afbeeldingen op een bepaalde manier kunnen interpreteren. Wel, wij zullen jullie hierop een antwoord proberen te geven. Maurits Cornelis Escher was een persoon die in zijn kunstwerken graag met gezichtsbedrog speelde. Maar natuurlijk zouden wij dit onderwerp niet gekozen hebben als er geen wiskundige verklaring mogelijk was voor zijn werken. Eerst even kort overlopen wat jullie vandaag allemaal zullen horen. Eerst zullen we kort even vertellen wie Escher eigenlijk precies is. Daarna komen jullie te weten wat gezichtsbedrog is en wat de oorzaken hiervan zijn. Dan zullen we even bekijken hoe Escher zijn kunst maakte en zullen we enkele wiskundige principes wat dichterbij bekijken. Daarna is het aan jullie om eens het creatiefste uit jezelf te halen en om af te sluiten zullen we dan even alles op een rijtje zetten. Dus eerst even iets zeggen over Escher. Maurits Cornelis Escher was een Nederlandse kunstenaar, die was geboren op 17 juni 1898 in Leeuwarden en hij stierf op 27 maart 1972 in Hilversum. Hij is bekend om zijn houtsneden, houtgravures en lithografieën, waarin hij vaak speelde met wiskundige principes. Lithografieën zijn grafische technieken gemaakt uit vet en drukinkt. Hij is onder andere zo bekend geworden omdat zijn werk uniek is. Hij werd geïnspireerd door de Islamitische kunst en de reizen die hij maakte. Pas in 1929 maakte Escher zijn eerste lithografie en in 1931 de eerste houtgravure. Je zou verwachten dat Escher een wiskundig persoon was, maar eigenlijk is dit helemaal niet zo. Hij verwerkte wel wiskundige principes in zijn werken. Daarom kreeg hij de bijnaam de wiskunstenaar. ( Wat is gezichtsbedrog? Het woordenboek heeft als definitie dat gezichtsbedrog of een optische illusie iets is wat het oog waarneemt, dat door de hersenen anders geïnterpreteerd wordt. Er zijn drie mogelijke oorzaken. Ten eerste kan het gaan om optische illusies. Dit wordt veroorzaakt door eigenschappen van licht, bijvoorbeeld denken dat de zon s avonds echt rood is. Als tweede heb je fysiologische illusies. Die zijn gebaseerd op eigenschappen van het menselijk oog. Ten slotte heb je ook nog psychologische illusies, waarbij de hersenen de signalen verkeerd interpreteren. Hier zie je een paar voorbeelden. (1) Het ziet eruit als een spiraal, maar eigenlijk zijn het allemaal cirkels. (2) Bij de volgende afbeelding zijn er alleen maar rechte lijnen, alhoewel dat je er misschien in het begin wel eens anders zou over denken. (3) Bij de volgende foto zou je misschien wel eens denken dat het linker bolletje groter is dan het rechter, maar je Pagina 1 van 6

2 moet eens goed kijken. Dan zal je hopelijk wel zien dat ze even groot zijn. (4) Probeer hier maar eens de zwarte bolletjes te tellen. (5) Hier moet je eens de hele tijd naar het kruisje kijken. (6) Als laatste voorbeeld mogen jullie eens 20 seconden naar deze figuur kijken Op welke manier maakt Escher zijn kunst? In de beoefening van de grafische technieken ging Escher zover, dat hij de techniek het belangrijkste ging vinden. De keuze van het onderwerp was vaak ondergeschikt aan de techniek. Escher had een sterke voorkeur voor technieken waarbij men met een zwart vlak begint en zwart weghaalt. In het boek over Escher worden zijn werken dan ook niet chronologisch gerangschikt, maar in een aantal karakteristieke onderwerpen. Bij elke soort geven we enkele voorbeelden met de nodige info over de prent om hem te begrijpen. Eerst en vooral hebben we de regelmatige vlakverdeling. Met regelmatige vlakvulling bedoelt men een prent die volledig gevuld is met gelijkvormige figuurtjes die elkaar begrenzen zonder dat er open stukken overblijven. Dit onderwerp kunnen we onderverdelen in verschillende categorieën. Soms transformeren de figuurtjes (bijvoorbeeld van vissen in vogels, van dag naar nacht ). Zo heb je hier bijvoorbeeld Ruiter en Zwanen. Bij deze kunstwerken wilde Escher symmetrie op een plat vlak in praktijk brengen. Daarbij moest hij rekening houden met de drie kristallografische grondbeginselen: verschuiving(translatie), het draaien om assen(rotatie) en de glijspiegeling( reflexie). Bij het kunstwerk Ruiters zie je dat de lichte ruiters spiegelbeelden zijn van de donkere. Hier hebben we het kunstwerk Dag en nacht. Hierbij gaat dag over in nacht, het landschap in dag is een spiegelbeeld van het landschap in nacht. Dan hebben we het kunstwerk Lucht en water. Hier zien we dat de vissen langzaam aan overgaan naar vogels. Dit komt omdat we vliegen associëren met lucht, dus zijn de vier witte vissen die de zwarte vogel omringen voor ons lucht. Op dezelfde manier doet zwemmen ons aan water denken, dus worden de vier zwarte vogels die de vis omringen, het water waarin hij zwemt. Ten slotte zien jullie hier Zon en maan. Dit is een heel speciale tekening. Wanneer je je focust op de blauwe vissen, is het net alsof het dag is en wanneer je je focust op de witte, rode vissen, is het net nacht. Dit komt door het feit dat wanneer we ons focussen op iets we de rest als achtergrond beschouwen. Daarna hebben we de oneindigheidsbenaderingen. Dit is een regelmatige vlakvulling, maar aan de randen of in het midden worden de afgebeelde figuurtjes steeds kleiner, zodat er uiteindelijk schijnbaar oneindig veel figuurtjes afgebeeld zijn. Zo hebben we bijvoorbeeld de kunstwerken Baloppervlak met vissen en Kleiner en kleiner. Dit is een regelmatige vlakvulling, maar in het midden worden de afgebeelde figuurtjes steeds kleiner, zodat er uiteindelijk schijnbaar oneindig veel figuurtjes afgebeeld zijn. Dan hebben we de overgang van plat naar ruimtelijk. Er is een verband tussen de tweedimensionale figuren van een regelmatig patroon en de individuele vrijheid van driedimensionale wezens die zich vrij in de ruimte kunnen bewegen. Als voorbeeld zullen we eens kijken naar het kunstwerk Reptielen. Dit stelt een levensloop van een reptiel voor. In het midden zie je een schrift, waarop je een mozaïek ziet van reptielvormige figuren. Een van hen heeft er blijkbaar genoeg van om de hele tijd plat te liggen. Dus kruipt het dier uit de tekening en begeeft zich in het vrije leven. Hij krijgt hierdoor een driedimensionale structuur. Het klimt op een boek en werkt zich, langs de helling van een tekendriehoek, moeizaam op naar het hoogtepunt van zijn bestaan. Blijkbaar is hij heel vermoeid, want hij blaast even uit en gaat dan opnieuw bergafwaarts langs een asbak terug naar de vlakte, waar hij zich opnieuw bij zijn soortgenoten voegt. Zo verliest het dier zijn driedimensionale structuur opnieuw. Dan hebben we ook het kunstwerk Cirkels. Rechtsboven komt een jongen heel vrolijk uit zijn huis gelopen. Pagina 2 van 6

3 Misschien heeft hij de lotto gewonnen. Terwijl hij naar beneden loopt, verliest hij zijn ruimtelijkheid en wordt de persoon als het ware een vlakke figuur. We gaan over naar de onregelmatige vlakvulling. De volgende afbeelding bestaat uit figuren die ieder verschillend zijn. Hier zien we Mosaic II. De rechthoekigheid is de enige regelmaat die hier nog aanwezig is. Alle figuren zijn anders. Nu komen we bij de tweede hoofdcategorie: de onbegrensde ruimte. Als voorbeeld zien jullie hier nu de Kubische ruimteverdeling. Rechthoekige balken die elkaar snijden verdelen elkaar in stukken van gelijke lengte, die elk de ribbe zijn van een kubus. Zo wordt de ruimte tot in het oneindige gevuld met kubussen van dezelfde inhoud. Dan zien jullie de Band van Mobius II. Dat is een voorbeeld van Ruimtelijke kringen en spiralen. Een gesloten lint heeft normaal gezien twee afzonderlijke oppervlakken: een in de binnenkant en een in de buitenkant van het lint. Maar hier lopen de rode mieren elkaar achterna en betreden ze zowel de voorkant als de achterkant. Het lint heeft dus maar een oppervlak. Daarna komen we bij de spiegelingen. Hier zijn er twee afbeeldingen. De eerste heet Modderplas. We zien in de modderplas de zon en de bomen. Hieruit kun je zien dat er geen wolken aanwezig zijn. Ook zie je de sporen van twee vrachtauto s, fietsen en voetgangers. Ook hebben we de Hand met spiegelende bol. De kunstenaar, Escher, houdt de bol vast in zijn hand en ziet zichzelf en zijn omgeving in de bol. Hijzelf staat wel centraal, hoe hij zich ook draait, hij blijft het middelpunt. Hij vindt zichzelf heel erg belangrijk. Dan gaan we even kijken naar de afbeelding Hol en bol. Naast elkaar staan drie huisjes. Er zijn twee fluitspelende jongens. Links kijkt de ene door een raam neer op het dak van het middelste huisje; als hij door het raam klimt, kan hij op het dak gaan staan. Springt hij vervolgens aan de voorkant naar beneden, dan komt hij een verdieping lager op de donkere vloer voor het huisje terecht. Maar mocht de rechterfluitspeler uit zijn raam willen kruipen, dan is er voor hem jammer genoeg geen vloer, maar een oneindige afgrond. Dan gaan we over naar de polyeders. Hier zien we de Dubbele planetoïde. Twee regelmatige viervlakken doordringen elkaar en zweven als een planetoïde in de ruimte. De lichtgekleurde wordt bewoond door mensen. Dit zie je aan de huizen. Het witte gedeelte is natuurlijk gebleven, dit zie je aan de dieren die hier leven. Beide lichamen vormen samen een geheel, maar zij kennen elkaar niet. Vervolgens zien we hier de Relativiteit. Dit is een voorbeeld van de relativiteiten. Drie zwaartekrachten werken hier loodrecht op elkaar. De bewoners van twee verschillende werelden kunnen niet op eenzelfde vloer lopen, maar wel samen eenzelfde trap gebruiken. Bijvoorbeeld: op de bovenste trap bewegen twee personen naast elkaar in dezelfde richting. Toch daalt de ene naar beneden en gaat de andere naar boven. Contact tussen beiden is uitgesloten, omdat ze elk in een verschillende wereld leven. Dan gaan we over naar misschien wel het belangrijkste: de prentententoonstelling. Dit is een voorbeeld van een conflict tussen plat en ruimtelijk. Een man kijkt naar een prent waarop hij zelf is afgebeeld. Als je 256 maal inzoomt rond het midden, dan zal je opnieuw de man zien die kijkt naar het schilderij. Als laatste zullen we eens kijken naar de onmogelijke bouwwerken. Een voorbeeld hiervan is Klimmen en dalen. Op deze prent lopen mensen op een soort wenteltrap met maar één wenteling, maar waarvan begin en einde aan elkaar zijn vastgemaakt, zodat de mensen steeds kunnen klimmen zonder ooit hoger te geraken. Dit is natuurlijk onmogelijk. Nu zullen we eens enkele wiskundige principes van dichtbij bekijken, die we terugvinden in de tekeningen van Escher. In zijn kunst gebruikte Escher immers een hoop wiskundige principes. We hebben er de Pagina 3 van 6

4 belangrijkste uitgekozen, want er zijn er zodanig veel dat we wel een hele dag zouden bezig zijn. Wiskundige principes: Hier zien we het kunstwerk Cirkellimiet III van Escher in dit kunstwerk komt iet uit de niet-euclidische meetkunde voor. Niet- Euclidische meetkunde Om de niet-euclidische meetkunde uit te leggen zullen we eerst eens blikken op de euclidische meetkunde. De euclidische meetkunde is een wiskundig systeem dat wordt toegeschreven aan de Griekse wiskundige Euclides van Alexandrië. Euclides schreef een boek de Elementen, waarin verscheidene basisconcepten van de huidige wiskunde beschreven. In zijn eerste boek worden 23 definities,5 axioma s en 5postulaten weergegeven. Uit elk van deze worden zogenaamde proposities afgeleid. Het vijfde postulaat luidt als volgt. o Als een rechte lijn een van twee parallelle lijnen snijdt, zal hij ook de andere snijden Niet-euclidische meetkunde is meetkunde waarbij het vijfde postulaat van Euclides (het parallellenpostulaat) niet wordt aangenomen. Onthoud dat het hyperbolische postulaat voor alsnog een postulaat is, en dat deze geen bewijs behoeft (en dat al van het onderstaande dan ook geen bewijs is). Er zijn in deze afbeelding de oneindige lijnen AB, BC en DE getekend. De lijn BC snijdt lijn AB; volgens Euclides definitie zijn deze dan ook niet parallel. AB is echter wel parallel aan DE, omdat deze lijnen elkaar niet snijden, wanneer tot in het oneindige verlengd. Maar, omdat BC niet DE snijdt, betekent dat dat tevens BC en DE parallel zijn. Zie hier, een lijn DE die zowel parallel is aan BC als aan AB, terwijl de ene parallel AB niet gelijk is aan C omdat deze twee niet parallel aan elkaar zijn. Maar hoe weten we dat bijvoorbeeld AB nooit lijn DE zal raken, zelfs wanneer tot in het oneindige verlengd? Immers, wanneer men oneindige lijnen maakt met de horizon bestaat er de mogelijkheid dat de cirkels waaruit ze bestaan (zie tweede onderstaande afbeelding) elkaar weliswaar niet in de schijf snijden, maar wellicht wel buiten deze schijf (zoals in de onderstaande figuur cirkels c en d elkaar buiten schijf s snijden, maar niet binnen deze schijf). Je kan dus zeggen dat Escher zijn tekening een postulaat van Euclides ontkracht. Formule van Euler, platonische veelvlakken Dan gaan we over naar de formule van Euler in platonische veelvlakken. Een platonisch veelvlak is een regelmatig veelvlak waarvan de zijvlakken congruente regelmatige veelhoeken zijn. Er bestaan 5 verschillende platonische lichamen: een tetraëder of viervlak, een hexaëder of beter bekend als een kubus, een achtvlak, twaalfvlak en een twintigvlak. Euler heeft de formule gevonden voor platonische lichamen. Die formule geeft het verband weer tussen het aantal zijvlakken, hoekpunten en het aantal ribben in een platonisch lichaam: h-r+z=2. Dus het aantal hoekpunten aantal ribben + aantal zijvlakken = 2. We gaan Pagina 4 van 6

5 eens kijken als deze formule ook klopt in een kubus, want je weet natuurlijk nooit dat die man zich eens heeft vergist. Bewijs: Gegeven: Schlegeldiagram (platgeslagen kubus)van kubus: Te bewijzen: aantal hoekpunten aantal ribben + aantal zijvlakken = 2 Bewijs 1: Stel dat je in de kubus 'lijnen' bijtekent: h-(r+1) + (z+1) = 2 h - r - 1+ z+1 = 2 h r + z = 2 Bewijs 2: Stel dat je in de kubus 'lijnen' weglaat h-(r-1) + (z-1) = 2 h r +1+z - 1=2 h r + z = 2 Conclusie: er verandert niets. Er blijft een driehoek over op het einde--> 3-3+2=2 Deze formule werd dus uitgevonden door ene Leonhard Euler, maar wat heeft Escher hier dan mee te maken? Escher was geen wiskundige, sterker nog, hij begreep er bijna niks van. Hij kon wel heel goed tekenen. Hij was geïnteresseerd in de structuren van de dingen die hij wilde afbeelden. In een aantal prenten verwerkte Escher de 5 platonische lichamen. Hij maakte hiermee prenten met gezichtsbedrog. Hij beeldde 2d dingen af die eruit zien als 3d afbeeldingen. Hij zette hier dingen in waaraan dan de mensen kunnen zien dat de afbeelding niet als 3d is bedoeld. Ook tekende hij figuren die je alleen kon tekenen maar niet kon bouwen. Meetkunde op de bol Regelmatige vlakvullingen Cartografie Oppervlakken volgens Gauss De Riemann schijf Coxeter Gulden snede Cartesische meetkunde Experiment We laten de leerlingen zien hoe ze zelf aan vlakvulling moeten doen. Pagina 5 van 6

6 Bronnen: nde_web.pdf Pagina 6 van 6

Een ander zijvlak is het regelmatige vijfhoek met aantal zijden P=5. Hierbij moeten Q=3 zijvlakken samenkomen in een hoekpunt van het veelvlak.

Een ander zijvlak is het regelmatige vijfhoek met aantal zijden P=5. Hierbij moeten Q=3 zijvlakken samenkomen in een hoekpunt van het veelvlak. Praktische-opdracht door een scholier 1498 woorden 6 juni 2003 6,5 134 keer beoordeeld Vak Wiskunde Deelvraag 1: Wat is de definitie van een Platonische Lichaam / Platonisch Veelvlak? De definitie: Een

Nadere informatie

Escher in Het Paleis. Wiskundepakket. Ruimtelijke figuren

Escher in Het Paleis. Wiskundepakket. Ruimtelijke figuren Escher in Het Paleis Wiskundepakket Ruimtelijke figuren Ruimtelijke figuren Escher maakt in EEN AANTAL prenten gebruik van wiskundig interessante ruimtelijke vormen, zoals Platonische lichamen en Möbiusbanden.

Nadere informatie

Escher in Het Paleis. Wiskundepakket. Oneindigheid

Escher in Het Paleis. Wiskundepakket. Oneindigheid Escher in Het Paleis Wiskundepakket Oneindigheid Oneindigheid Wiskundigen hebben weinig moeite met het begrip oneindigheid. Er zijn bijvoorbeeld oneindig veel getallen, een lijn is oneindig lang en oneindig

Nadere informatie

Escher in Het Paleis. Wiskundepakket. Onmogelijke figuren

Escher in Het Paleis. Wiskundepakket. Onmogelijke figuren Escher in Het Paleis Wiskundepakket Onmogelijke figuren Onmogelijke figuren Een onmogelijk figuur is een tweedimensionale weergave van een object dat in drie dimensies onmogelijk lijkt te kunnen bestaan.

Nadere informatie

Escher in Het Paleis. Wiskundepakket. Perspectief

Escher in Het Paleis. Wiskundepakket. Perspectief Escher in Het Paleis Wiskundepakket Perspectief Perspectief We leven in een driedimensionale wereld. Deze wereld nemen we echter waar door projecties op tweedimensionale vlakken of gebogen vlakken. In

Nadere informatie

Niet-euclidische meetkunde

Niet-euclidische meetkunde Keuzeonderdeel Wiskunde D Hans van Ballegooij Maaslandcollege, Oss Dictaat Versie: 20 februari 2013 Hans van Ballegooij Maaslandcollege Oss Inhoudsopgave 1 De elementen van Euclides 1 2 Niet-euclidische

Nadere informatie

Een Nieuwe Wereld uit het Niets

Een Nieuwe Wereld uit het Niets Een Nieuwe Wereld uit het Niets Gert Vegter Instituut voor Wiskunde en Informatica (RUG) G.Vegter@math.rug.nl www.math.rug.nl/~gert Masterclass, 16 april 2009 GV () Werelden uit het niets Masterclass,

Nadere informatie

Regelmatige en halfregelmatige veelvlakken

Regelmatige en halfregelmatige veelvlakken Regelmatige en halfregelmatige veelvlakken Wiskunde & Cultuur 2-3 W.v.Ravenstein 2010-2011 aangepast Vandaag Platonische lichamen Regelmatig, halfregelmatig en andere naamgeving Waarom zijn er maar 5 Platonische

Nadere informatie

Stelling van Pythagoras

Stelling van Pythagoras 1 of 6 Stelling van Pythagoras Uit Wikipedia, de vrije encyclopedie De stelling van Pythagoras is een wiskundige stelling die zijn naam dankt aan de Griekse wiskundige Pythagoras. 'Zijn' stelling was overigens

Nadere informatie

HET IS EEN PRISMA, OF TOCH NIET...

HET IS EEN PRISMA, OF TOCH NIET... In dit artikel laten we zien hoe je een kubus, een rombendodecaëder en een afgeknotte octaëder kunt omvormen tot een. Om de constructie zelf uit te voeren, heb je de bouwtekeningen nodig die bij dit artikel

Nadere informatie

TEKENEN. beeldende vorming. Vlakvullingen. hoofdstuk 13: vlakvulling

TEKENEN. beeldende vorming. Vlakvullingen. hoofdstuk 13: vlakvulling Vlakvullingen Tekeningen zoals hierboven heb je vast weleens eerder gezien, bijvoorbeeld op één van de posters in de wiskundelokalen. Het is het werk van Escher.Je kent hem misschien ook wel van de onmogelijke

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 4

Uitwerkingen oefeningen hoofdstuk 4 Uitwerkingen oefeningen hoofdstuk 4 4.4.1 Basis Lijnen en hoeken 1 Het assenstelsel met genoemde lijnen ziet er als volgt uit: 4 3 2 1 l k -4-3 -2-1 0 1 2 3 4-1 -2-3 n m -4 - Hieruit volgt: a Lijn k en

Nadere informatie

Werkstuk van Suzanne groep 7a

Werkstuk van Suzanne groep 7a Werkstuk van Suzanne groep 7a Inhoud: Waarom doe ik mijn werkstuk over Escher? 3 Wie is Escher 3 Het leven van Escher 4 De jeugd van Escher Reizen Geldzorgen Houtsnede en litho s 6 Houdsneden Litho s Optische

Nadere informatie

Onmogelijke figuren. Geschreven door Judith Floor en Vivike Lapoutre. Herzien door Dieuwke van Wijk en Amarins van de Voorde

Onmogelijke figuren. Geschreven door Judith Floor en Vivike Lapoutre. Herzien door Dieuwke van Wijk en Amarins van de Voorde Onmogelijke figuren Geschreven door Judith Floor en Vivike Lapoutre Herzien door Dieuwke van Wijk en Amarins van de Voorde Vierkant voor Wiskunde Zomerkamp A 2010 Voorwoord Je hebt vast wel eens een stripboek

Nadere informatie

Handig met getallen 4 (HMG4), onderdeel Meetkunde

Handig met getallen 4 (HMG4), onderdeel Meetkunde Handig met getallen 4 (HMG4), onderdeel Meetkunde Erratum Meetkunde Je vindt hier de correcties voor Handig met getallen 4 (ISBN: 978 94 90681 005). Deze correcties zijn ook bedoeld voor het Rekenwerkboek

Nadere informatie

Sum of Us 2014: Topologische oppervlakken

Sum of Us 2014: Topologische oppervlakken Sum of Us 2014: Topologische oppervlakken Inleiding: topologische oppervlakken en origami Een topologisch oppervlak is, ruwweg gesproken, een tweedimensionaal meetkundig object. We zullen in deze tekst

Nadere informatie

de Leuke En Uitdagende Wiskunde VEELVLAKKEN SAMENSTELLING: H. de Leuw

de Leuke En Uitdagende Wiskunde VEELVLAKKEN SAMENSTELLING: H. de Leuw SAMENSTELLING: H. de Leuw 1. VEELHOEKEN. Een veelvlak is een lichaam dat wordt begrensd door vlakke veelhoeken. Zo zijn balken en piramides wel veelvlakken, maar cilinders en bollen niet. Een veelhoek

Nadere informatie

Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen. Geschiedenis van de niet-euclidische meetkunde

Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen. Geschiedenis van de niet-euclidische meetkunde Geschiedenis van de niet-euclidische meetkunde als keuzeonderwerp voor vwo-leerlingen Geschiedenis van de niet-euclidische meetkunde Aan de hand van inhoud zebra-boekje Ideeën voor onderzoeksopdrachten

Nadere informatie

Niet-euclidische meetkunde. Les 3 Meetkunde op de bol

Niet-euclidische meetkunde. Les 3 Meetkunde op de bol Niet-euclidische meetkunde Les 3 Meetkunde op de bol (Deze les sluit aan bij de paragrafen 2.1 en 2.2 van de tekst Niet-Euclidische meetkunde van de Wageningse Methode) Kun je het vijfde postulaat afleiden

Nadere informatie

Caspar Bontenbal april 2015 WISKUNDE & KUNST. Eindverslag

Caspar Bontenbal april 2015 WISKUNDE & KUNST. Eindverslag Caspar Bontenbal 0903785 24 april 2015 WISKUNDE & KUNST Eindverslag Table of Contents Les 1 - Introductie wiskunde & kunst... 2 Opdracht 1.1... 2 Opdracht 1.2... 2 Les 2 - Wiskunde met Verve bloemlezing

Nadere informatie

Schaduwopgaven Verhoudingen

Schaduwopgaven Verhoudingen Schaduwopgaven Verhoudingen bij 5 Een vierkant wordt verknipt in zeven driehoeken, zoals hiernaast. Het grijze driehoekje gooien we weg. Wat is de verhouding van de oppervlakte van de andere zes? na 10

Nadere informatie

Kernbegrippen Kennisbasis wiskunde Onderdeel meetkunde

Kernbegrippen Kennisbasis wiskunde Onderdeel meetkunde Kernbegrippen Kennisbasis wiskunde Onderdeel meetkunde Aanzicht Een ruimtelijk figuur kun je van verschillende kanten bekijken, je noemt dat aanzichten. Er zijn 5 aanzichten: Vooraanzicht (van voren).

Nadere informatie

inh oud 1. Inleiding 3 2. Kijken en zien 4 3. Proefjes 4. Hoogte, breedte en diepte 5. Gefopt door licht en donker 6. Gefopt door schuine lijnen

inh oud 1. Inleiding 3 2. Kijken en zien 4 3. Proefjes 4. Hoogte, breedte en diepte 5. Gefopt door licht en donker 6. Gefopt door schuine lijnen Je ogen bedrogen inhoud 1. Inleiding 3 2. Kijken en zien 4 3. Proefjes 5 4. Hoogte, breedte en diepte 6 5. Gefopt door licht en donker 7 6. Gefopt door schuine lijnen 7 6. Gefopt door kleur 8 7. Gefopt

Nadere informatie

Aan de gang. Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u

Aan de gang. Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u Aan de gang Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u Verkenning 1 (Piano) Je moet een zware piano verschuiven door een 1 meter brede gang met een rechte hoek er in. In de figuur hierboven

Nadere informatie

Meetkundige constructies Leerlingmateriaal

Meetkundige constructies Leerlingmateriaal Meetkundige constructies Leerlingmateriaal Nynke Koopmans Roeland Hiele Historical Aspects of Classroom Mathematics Universiteit Utrecht, juni 2013 Inleiding Inleiding Een meetkundige constructie is een

Nadere informatie

3 Cirkels, Hoeken en Bogen. Inversies.

3 Cirkels, Hoeken en Bogen. Inversies. 3 Cirkels, Hoeken en Bogen. Inversies. 3.1. Inleiding Het derde college betreft drie onderwerpen (hoeken, bogen en inversies), die in concrete meetkundige situaties vaak optreden. Dit hoofdstuk is bedoeld

Nadere informatie

handleiding pagina s 434 tot Handleiding 1.2 Huistaken huistaak 12: bladzijde Werkboek

handleiding pagina s 434 tot Handleiding 1.2 Huistaken huistaak 12: bladzijde Werkboek week 13 les 5 toets en foutenanalyse handleiding pagina s 434 tot 443 nuttige informatie 1 Handleiding 1.1 Kopieerbladen pagina s 374 en 375: vierhoeken pagina 376: eigenschappen van diagonalen in vierhoeken

Nadere informatie

Inhoud. Het leven van Escher. Weiland wordt vogel. Kringloop metamorfose. De wereld op z n kop.

Inhoud. Het leven van Escher. Weiland wordt vogel. Kringloop metamorfose. De wereld op z n kop. Inhoud. Blz. 1. Blz. 2. Blz. 3. Blz. 4. Blz. 5. Blz. 6. Blz. 7. Blz. 8. Blz. 9. Blz. 10. Blz. 11. Kaft Inhoud Het leven van Escher. Moeilijke jaren. Weiland wordt vogel. Kringloop metamorfose. De wereld

Nadere informatie

Dimensies. een ruimtelijke tocht langs onbekende assen. Anne Lotte van der Kooi Jesse Krijthe Roderik Vogels Onder begeleiding van Aad Goddijn

Dimensies. een ruimtelijke tocht langs onbekende assen. Anne Lotte van der Kooi Jesse Krijthe Roderik Vogels Onder begeleiding van Aad Goddijn Dimensies een ruimtelijke tocht langs onbekende assen Anne Lotte van der Kooi Jesse Krijthe Roderik Vogels Onder begeleiding van Aad Goddijn Junior College Utrecht, Januari 7 Inhoud. Abstract.... Inleiding...5.

Nadere informatie

Heeft Escher ander soorten prenten gemaakt tijdens zijn verblijven in het buitenland?

Heeft Escher ander soorten prenten gemaakt tijdens zijn verblijven in het buitenland? Biografie Escher Escher heeft in vele landen gewoond. Nederland, Italie, Zwitserland, Spanje, belgie en later weer nederland zijn voor Escher een thuishaven geweest. Zouden deze verschillende landen en

Nadere informatie

Veelvlak. Begrippenlijst

Veelvlak. Begrippenlijst Veelvlakken Tijdens dit project Veelvlakken ga je vooral veel zelf onderzoeken. Je zult veel aan het bouwen zijn met Polydron materiaal. Waarschijnlijk zul je naar aanleiding van je bevindingen zelf vragen

Nadere informatie

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 1005 tot 1015 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 812: gelijkvormig / vervormen pagina 813: patronen pagina 814: kubus pagina

Nadere informatie

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer.

De constructie van een raaklijn aan een cirkel is, op basis van deze stelling, niet zo erg moeilijk meer. Cabri-werkblad Raaklijnen Raaklijnen aan een cirkel Definitie Een raaklijn aan een cirkel is een rechte lijn die precies één punt (het raakpunt) met de cirkel gemeenschappelijk heeft. Stelling De raaklijn

Nadere informatie

Escher in Het Paleis. Wiskundepakket. Inleiding. M.C. Escher en Wiskunde. De wiskunde educatie van Escher in Het Paleis

Escher in Het Paleis. Wiskundepakket. Inleiding. M.C. Escher en Wiskunde. De wiskunde educatie van Escher in Het Paleis Escher in Het Paleis Wiskundepakket Inleiding M.C. Escher en Wiskunde De wiskunde educatie van Escher in Het Paleis M.C. Escher en Wiskunde Hieronder volgt de inleiding van de wiskunde educatie voor middelbare

Nadere informatie

Wiskunde D-dag Vrijeschool Zutphen VO donderdag 18 februari, 12:30u 16:30u. Aan de gang

Wiskunde D-dag Vrijeschool Zutphen VO donderdag 18 februari, 12:30u 16:30u. Aan de gang Wiskunde D-dag 2016 Vrijeschool Zutphen VO donderdag 18 februari, 12:30u 16:30u Aan de gang Verkenning 1 piano Je moet een zware piano verschuiven door een 1 meter brede gang met een rechte hoek er in.

Nadere informatie

Over het Monge-punt van een viervlak

Over het Monge-punt van een viervlak Over het Monge-punt van een viervlak Dick Klingens Krimpenerwaard College, Krimpen ad IJssel september 2005 Inleiding Het is mogelijk door elke ribbe van een viervlak een vlak aan te brengen evenwijdig

Nadere informatie

http://www.kidzlab.nl/index2.php?option=com_content&task=vi...

http://www.kidzlab.nl/index2.php?option=com_content&task=vi... Veelvlakken De perfecte vorm Plato was een grote denker in de tijd van de Oude Grieken. Hij was een van de eerste die de regelmatige veelvlakken heel bijzonder vond. Hij hield ervan omdat ze zulke mooie,

Nadere informatie

Bedoeling: Doelen: Leerplandoelen wiskunde (VVKBaO):

Bedoeling: Doelen: Leerplandoelen wiskunde (VVKBaO): Bedoeling: De leerlingen leren M.C. Escher en zijn werken kennen. Ze ontdekken ook wat regelmatige vlakvulling is en maken kennis met de drie soorten symmetrie die Escher in zijn werken gebruikt. Na het

Nadere informatie

TEKENEN MET EEN DRIELUIK

TEKENEN MET EEN DRIELUIK PERSPECTIEFTEKENEN AFLEVERING 1 Evenwijdige lijnen worden op een foto zelden evenwijdig afgebeeld. Wat zit hier achter? Kunnen we begrijpen wat er op een foto met evenwijdige lijnen gebeurt? Het blijkt

Nadere informatie

De wonderlijke wereld van Escher

De wonderlijke wereld van Escher M.C. Escher, Cirkellimiet IV (Hemel en hel), houtsnede, 1960 (detail) De wonderlijke wereld van Escher Handleiding docenten Voortgezet onderwijs vmbo havo vwo Geachte docent Binnenkort bezoekt u Escher

Nadere informatie

Fractale dimensie. Eline Sommereyns 6wwIi nr.9

Fractale dimensie. Eline Sommereyns 6wwIi nr.9 Fractale dimensie Eline Sommereyns 6wwIi nr.9 Inhoudstabel Inleiding... 3 Gehele dimensie... 4 Begrip dimensie... 4 Lengte, breedte, hoogte... 4 Tijd-ruimte... 4 Fractale dimensie... 5 Fractalen... 5 Wat?...

Nadere informatie

Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen. Instap. Een opgave uit de oefentoets:

Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen. Instap. Een opgave uit de oefentoets: Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen Instap Een opgave uit de oefentoets: Van welke verpakkingen is de vorm een prisma? A. Pak spaghetti blikje chocomel doosje

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

1. C De derde zijde moet meer dan 5-2=3 zijn en minder dan 5+2=7 (anders heb je geen driehoek).

1. C De derde zijde moet meer dan 5-2=3 zijn en minder dan 5+2=7 (anders heb je geen driehoek). Uitwerkingen wizprof 08. C De derde zijde moet meer dan 5-=3 zijn en minder dan 5+=7 (anders heb je geen driehoek).. C De rode ringen zitten in elkaar, de groene liggen onder de rode ringen en zijn er

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde Vlaamse Wiskunde Olympiade 2003-2004: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 3 1,731 5,361 π 3,116 1 Als a 1 3 a 1 3 a m = a met a R + \{0, 1}, dan

Nadere informatie

4,7. Praktische-opdracht door een scholier 3588 woorden 2 juni keer beoordeeld

4,7. Praktische-opdracht door een scholier 3588 woorden 2 juni keer beoordeeld Praktische-opdracht door een scholier 3588 woorden 2 juni 2008 4,7 52 keer beoordeeld Vak Wiskunde Inleiding In dit werkstuk gaan wij de wiskundige opbouw en vlakverdeling van een aantal van Escher s kunstwerken

Nadere informatie

Niet meer dan drie tetraëders in één kubus

Niet meer dan drie tetraëders in één kubus Niet meer dan drie tetraëders in één kubus or Hurkens januari 008 Samenvatting Een opgave door Jan van de raats gesteld luidt als volgt: Hoeveel tetraëders met zijde een kun je stapelen in een eenheidskubus?

Nadere informatie

WISKUNDE-ESTAFETTE RU 2005 Uitwerkingen

WISKUNDE-ESTAFETTE RU 2005 Uitwerkingen WISKUNDE-ESTAFETTE RU 2005 Uitwerkingen 1 We proberen alle mogelijkheden van klein naar groot: p = 1 is uitgesloten: dan zou elke dag hetzelfde resultaat geven. p = 2 is uitgesloten: dan zouden dag 1 en

Nadere informatie

2. Antwoorden meetkunde

2. Antwoorden meetkunde 2. Antwoorden meetkunde In dit hoofdstuk zijn de antwoorden op de opgaven over Meetkunde opgenomen. Ze zijn kort en bondig per paragraaf gerangschikt. Dat betekent dat de antwoorden geen uitgebreide uitleg

Nadere informatie

Meetkunst Les 4 Spelen met perspectief

Meetkunst Les 4 Spelen met perspectief Meetkunst Les 4 Spelen met perspectief Vervreemding door optische illusies Niet alle kunstenaars houden zich aan de regels van perspectief, standpunt, onderlinge verhoudingen etc. Zij overtreden moedwillig

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 009-010: tweede ronde 1 Wat is de straal van een cirkel met oppervlakte? () π π (C) π (D) π (E) π an de diagonaal [] van een vierkant met zijde 1, bouwt men links en rechts

Nadere informatie

Wisknutselen in de klas: creatief met wiskunde

Wisknutselen in de klas: creatief met wiskunde Wisknutselen in de klas: creatief met wiskunde Florine Meijer, Wisknutsels Inleiding Creativiteit en wiskunde, gaat dat samen? Kan je wiskunde doen en tegelijk knippen en plakken, of haken, breien en borduren?

Nadere informatie

27 Macro s voor de schijf van Poincaré

27 Macro s voor de schijf van Poincaré 27 Macro s voor de schijf van Poincaré 27.1 Inleiding In het secundair onderwijs zijn leerlingen vertrouwd met de Euclidische meetkunde. In het Euclidisch vlak geldt het beroemde 5 de parallellen postulaat:

Nadere informatie

WISKUNDE-ESTAFETTE 2012 Uitwerkingen. a b. e f g

WISKUNDE-ESTAFETTE 2012 Uitwerkingen. a b. e f g WISKUNDE-ESTAFETTE 202 Uitwerkingen Noem de zeven cijfers even a t/m g. a b c d + e f g Omdat de twee getallen die we optellen beide kleiner zijn dan 00 moet het resultaat kleiner dan 200 zijn. Dus e =.

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

5.0 INTRO. Hoofdstuk 5 DE RUIMTE IN

5.0 INTRO. Hoofdstuk 5 DE RUIMTE IN 93 5.0 INTRO 1 Op het werkblad vind je vier bouwplaten. Knip ze uit en zet ze in elkaar. Je krijgt drie piramides en een kubusvormige doos zonder deksel. a De drie piramides passen precies in de doos.

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 006-007: tweede ronde 1 In een rechthoekige driehoek verdeelt de bissectrice uit een scherpe hoek de overstaande zijde in twee stukken met lengten 4 en 5 (zie figuur) De oppervlakte

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olmpiade 2006-2007: eerste ronde 1 Hoeveel punten kunnen een rechthoek en een cirkel maimaal gemeen hebben? (A) 2 (B) 4 (C) 6 (D) 8 (E) 10 2 Van de volgende drie uitspraken R : 2 = R

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 990-99: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt: een deelnemer start met 0 punten Per

Nadere informatie

4 - Stelling van Pythagoras

4 - Stelling van Pythagoras 4 - Stelling van Pythagoras De opdracht omschrijving voor dit hoofdstuk bestond uit het volgende: D1 - Maak de 5 opdrachten. Zorg voor nette uitwerkingen. D2 - Maak een powerpoint over de stelling van

Nadere informatie

Bij een pv kan men origineel en beeld continu in elkaar overvoeren. De `oriëntatie' blijft hierbij behouden. Er zijn dus twee soorten gt's: De directe

Bij een pv kan men origineel en beeld continu in elkaar overvoeren. De `oriëntatie' blijft hierbij behouden. Er zijn dus twee soorten gt's: De directe Lesbrief 9 Meetkunde II 1 Puntvermenigvuldigingen Definitie 1.1 Een transformatie G van het vlak heet een gelijkvormigheidstransformatie (verder afgekort als gt) als er een constante f > 0 bestaat zo,

Nadere informatie

Wiskunde C vwo. Workshop Noordhoff wiskundecongres 19 november 2015 Jan Dijkhuis en Sabine de Waal. Programma

Wiskunde C vwo. Workshop Noordhoff wiskundecongres 19 november 2015 Jan Dijkhuis en Sabine de Waal. Programma Wiskunde C vwo Workshop Noordhoff wiskundecongres 19 november 2015 Jan Dijkhuis en Sabine de Waal Programma 1. Vorm en ruimte in Getal & Ruimte 2. Logisch redeneren in Getal & Ruimte 1. Examenprogramma

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

Stap 1: Ga naar Stap 3: Gebruik de pijltjes om te navigeren tussen de bladzijden.

Stap 1: Ga naar   Stap 3: Gebruik de pijltjes om te navigeren tussen de bladzijden. Stap 1: Ga naar www.wiskundewereld.be/bzl-ruimtemeetkunde.html Stap 2: Klik rechts op de witte knop. Stap 3: Gebruik de pijltjes om te navigeren tussen de bladzijden. Stap 4: Links zie je waar je je in

Nadere informatie

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar

25 JAAR VLAAMSE WISKUNDE OLYMPIADE. De slechtst beantwoorde vragen in de eerste ronde per jaar 25 JAAR VLAAMSE WISKUNDE OLYMPIADE De slechtst beantwoorde vragen in de eerste ronde per jaar Samenstelling en lay-out: Daniël Tant Luc Gheysens Vlaamse Wiskunde Olympiade v.z.w. VWO 1 1986 Vraag 17 Een

Nadere informatie

Inhoudsopgave. Introductie Escher 4. Escher biografie 5. Escher van toen... 7. Escher stijl 8. Escher werk 10. Escher van nu... 14.

Inhoudsopgave. Introductie Escher 4. Escher biografie 5. Escher van toen... 7. Escher stijl 8. Escher werk 10. Escher van nu... 14. Inhoudsopgave Introductie Escher 4 Escher biografie 5 Escher van toen... 7 Escher stijl 8 Escher werk 10 Escher van nu... 14 Museum 16 Escher zelf... 18 Colofon 19 03 Introductie Escher Maurits Cornelis

Nadere informatie

WISKUNDE: HERHALINGSOEFENINGEN EINDE ZESDE LEERJAAR

WISKUNDE: HERHALINGSOEFENINGEN EINDE ZESDE LEERJAAR WISKUNDE: HERHALINGSOEFENINGEN EINDE ZESDE LEERJAAR Getallenkennis: getalbegrip 1. Noteer het getal: 5D 2H 6HD 7t 9d 2. Noteer het getal: MMXVIII Getallenkennis: werken met gegevens 3. Hoeveel maanden

Nadere informatie

Steekkaart: nummer 5W

Steekkaart: nummer 5W Steekkaart: nummer 5W Onderwerp Ruimtefiguren herkennen in voorwerpen in de klas en hun eigenschappen benoemen Leeftijd/Doelgroep 5 e leerjaar Leergebied Wiskunde Organisatie Tijdsduur 50 minuten Beschrijving

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

Herhalingsles 2 Meetkunde 1 Weeroefeningen

Herhalingsles 2 Meetkunde 1 Weeroefeningen Herhalingsles Meetkunde Weeroefeningen HB. MK Kruis aan wat juist is. Deze figuur is een vierhoek, maar geen vierkant. een vierkant, maar geen ruit. een ruit, maar geen vierkant. een vierkant en een ruit.

Nadere informatie

Ruimtemeetkunde deel II. Cursus voor Latijn-Wiskunde, Wetenschappen-Wiskunde en Economie-Wiskunde

Ruimtemeetkunde deel II. Cursus voor Latijn-Wiskunde, Wetenschappen-Wiskunde en Economie-Wiskunde Ruimtemeetkunde deel II Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor Latijn-Wiskunde, Wetenschappen-Wiskunde en Economie-Wiskunde 2 Hoofdstuk 1 De reële euclidische ruimte 1.1 De euclidische

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

d = 8 cm 2 6 A: = 26 m 2 B: = 20 m 2 C: = 18 m 2 D: 20 m 2 E: 26 m 2

d = 8 cm 2 6 A: = 26 m 2 B: = 20 m 2 C: = 18 m 2 D: 20 m 2 E: 26 m 2 H17 PYTHAGORAS 17.1 INTRO 1 b c d 1 4 4 = 8 cm 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Dag van de wiskunde. Ideeën voor de klaspraktijk. Kortrijk 26 november Spreker: E. Jennekens

Dag van de wiskunde. Ideeën voor de klaspraktijk. Kortrijk 26 november Spreker: E. Jennekens Dag van de wiskunde Kortrijk 26 november 2009 Ideeën voor de klaspraktijk Spreker: E. Jennekens 1. De provincie West-Vlaanderen is 3144 km² groot. Kun je de hele wereldbevolking, 6,7 miljard, verwelkomen

Nadere informatie

Meetkunde. MBO Wiskunde Niveau 4 - Leerjaar 1, periode 3

Meetkunde. MBO Wiskunde Niveau 4 - Leerjaar 1, periode 3 Meetkunde MBO Wiskunde Niveau 4 - Leerjaar 1, periode 3 LOCATIE: Noorderpoort Beroepsonderwijs Stadskanaal DOMEINEN: Bouwkunde, Werktuigbouw, Research Instrumentmaker LEERWEG: BOL - MBO Niveau 4 DATUM:

Nadere informatie

Een les wiskunde: hoe Kepler naar de wereld keek (voorbeeldles voortgezet onderwijs)

Een les wiskunde: hoe Kepler naar de wereld keek (voorbeeldles voortgezet onderwijs) Een les wiskunde: hoe Kepler naar de wereld keek (voorbeeldles voortgezet onderwijs) Ab van der Roest Dit materiaal is onderdeel van het compendium christelijk leraarschap dat samengesteld is door het

Nadere informatie

Platonische lichamen en andere reguliere polytopen

Platonische lichamen en andere reguliere polytopen Platonische lichamen en andere reguliere polytopen Bernd Souvignier Voorjaar 005 Inhoud De platonische lichamen. Reguliere veelhoeken.......................... Reguliere veelvlakken.........................

Nadere informatie

project Escher Je werkt tijdens dit project individueel en samen. Welke opdracht je alleen doet en welke samen wordt per opdracht beschreven.

project Escher Je werkt tijdens dit project individueel en samen. Welke opdracht je alleen doet en welke samen wordt per opdracht beschreven. instructie De komende vijf weken gaan we drie uur per week aan dit project werken. Binnen dit project zijn er vijf opdrachten die je moet doen. Je mag zelf weten wanneer je welke opdracht maakt, maar denk

Nadere informatie

Cabri-werkblad Negenpuntscirkel

Cabri-werkblad Negenpuntscirkel Cabri-werkblad Negenpuntscirkel 0. Vooraf - Bij dit werkblad wordt kennis verondersteld van de eigenschappen van parallellogrammen, rechthoekige driehoeken en van de elementaire eigenschappen van de koordenvierhoek.

Nadere informatie

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β. 1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

88 Optische illusies verzameld door meester Jan

88 Optische illusies verzameld door meester Jan 88 Optische illusies verzameld door meester Jan 01 Punten Zijn de punten nu zwart of wit? 02 Rekenen Voer de onderstaande berekening, uit het hoofd, zo snel uit als je kunt (dus zonder pen en papier en

Nadere informatie

Symmetrische betegelingen op de bol en in het vlak

Symmetrische betegelingen op de bol en in het vlak Symmetrische betegelingen op de bol en in het vlak Jan van de Craats (UvA) NWD, 4 februari 2012 Symmetrie Symmetrie Inspiratiebron: John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries

Nadere informatie

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Albert Einstein en Euclides Geboren te Ulm op 14 maart 1879 Als kind geinteresseerd in Wiskunde en wetenschappen:magneten,electromotoren, wiskundige

Nadere informatie

Passer en liniaalconstructies WIM CORNELISSEN DAG VAN GEOGEBRA VLAANDEREN SINT-BARBARACOLLEGE GENT - 28 MEI 2011

Passer en liniaalconstructies WIM CORNELISSEN DAG VAN GEOGEBRA VLAANDEREN SINT-BARBARACOLLEGE GENT - 28 MEI 2011 Passer en liniaalconstructies WIM CORNELISSEN (WIM@CORNELISSEN.BE) DAG VAN GEOGEBRA VLAANDEREN SINT-BARBARACOLLEGE GENT - 28 MEI 2011 1. Inleiding De presentatie draait rond de website www.cornelissen.be/passerliniaal.

Nadere informatie

Escher in Het Paleis. Wiskundepakket. Regelmatige vlakvullingen

Escher in Het Paleis. Wiskundepakket. Regelmatige vlakvullingen Escher in Het Paleis Wiskundepakket Regelmatige vlakvullingen Regelmatige vlakvullingen Een regelmatige vlakvulling is een manier om een vlak te vullen doormiddel van een zich steeds herhalend patroon.

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke

Nadere informatie

AFSTANDEN IN PERSPECTIEF

AFSTANDEN IN PERSPECTIEF ESECTIEFTEKENEN AFLEVEING 2 In de eerste aflevering over perspectieftekenen, afgelopen november in ythagoras, hebben we het tekenen van evenwijdige lijnen geïntroduceerd. In deze aflevering denken we na

Nadere informatie

en een punt P BC zodat BP 2. CB.

en een punt P BC zodat BP 2. CB. Oplossingen E F G H Gegeven is de kubus A C D en een punt P C zodat P C a) epaal het snijpunt van de rechte PH met het voorvlak AFE van de kubus De rechte PH ligt in het diagonaalvlak EHC van de kubus

Nadere informatie

Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen.

Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen. Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen. Jakob Steiner (Utzenstorf (kanton Bern), 18 maart 1796 - Bern, 1 april 1863) was een Zwitsers wiskundige. Hij wordt beschouwd als een van de belangrijkste

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

Een passie voor SYMMETRIE

Een passie voor SYMMETRIE Een passie voor SYMMETRIE Jan van de Craats (UvA) NWD, 6 februari 2016 Soorten symmetrische patronen en voorwerpen Soorten symmetrische patronen en voorwerpen Rozetpatronen (2 soorten) Soorten symmetrische

Nadere informatie

Rakende cirkels. Oriëntatie. Keuzeopdracht voor wiskunde

Rakende cirkels. Oriëntatie. Keuzeopdracht voor wiskunde Rakende cirkels Keuzeopdracht voor wiskunde Verrijkende opdracht over construeren en redeneren in figuren Voorkennis: meetkunde: cirkels, raaklijn, loodrecht stand; sinus: waarden voor bekende hoeken als

Nadere informatie

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak

Wet van Snellius. 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak Wet van Snellius 1 Lichtbreking 2 Wet van Snellius 3 Terugkaatsing van licht tegen een grensvlak 1 Lichtbreking Lichtbreking Als een lichtstraal het grensvlak tussen lucht en water passeert, zal de lichtstraal

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 99-99 : Tweede Ronde De Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination

Nadere informatie

Platonische transformatiegroepen

Platonische transformatiegroepen Platonische transformatiegroepen Luc Van den Broeck 8 augustus 2015 Samenvatting In dit document worden de transformatiegroepen van de platonische lichamen bestudeerd. Zonder te vervallen in algebraïsche

Nadere informatie