In deze module komen de volgende statistische begrippen aan bod: frequentieverdeling, gemiddelde, modus, mediaan, variantie, kansverdelingen.

Maat: px
Weergave met pagina beginnen:

Download "In deze module komen de volgende statistische begrippen aan bod: frequentieverdeling, gemiddelde, modus, mediaan, variantie, kansverdelingen."

Transcriptie

1 Statistiek module 1 In deze module komen de volgende statistische begrippen aan bod: frequentieverdeling, gemiddelde, modus, mediaan, variantie, kansverdelingen. De frequentieverdeling Variabele eigenschappen van individuen kunnen, binnen zekere grenzen, allerlei verschillende waarden aannemen: de gemeten getallen komen niet overeen met een enkel punt op de getallenas, maar met een bepaald gebied of interval. Binnen dit interval komen sommige waarden vaker voor dan andere (figuur 1). Dit blokdiagram beschrijft de lengte van bijna dienstplichtigen die in 1990 zijn gekeurd. De horizontale getallenas is ingedeeld in klassen van telkens 5 cm. Boven ieder stukje staat een blokje waarvan de oppervlakte overeenkomt met het aantal dienstplichtigen in die klasse, de frequentie. In dit geval zijn alle klassen even breed, zodat de oppervlakte gelijk opgaat met de hoogte van het blokje; de frequentie kan zo direct worden afgelezen. De grafiek verandert niet als op de verticale as in plaats van aantallen procenten worden geteld, en we zullen voortaan altijd met deze relatieve frequenties werken. De oppervlakte onder de getekende frequenties van figuur 1 is dan 100%. Figuur 1 Frequentieverdeling van dienstplichtigen naar lichaamslengte, 1990 (bron: CBS) Deze grafiek staat bekend als een frequentieverdeling. Het voorbeeld hoort bij de beschrijvende statistiek, want het berust op een vrijwel volledige telling van Nederlandse mannen van 19 jaar in Het toeval komt er niet aan te pas, behalve in die zin dat sommige mensen toevallig erg lang uitvallen en andere erg klein. Aan deze frequentieverdeling kunnen we een aantal dingen zien. Ten eerste lijkt het alsof er geen dienstplichtigen zijn kleiner dan 1.60 m of groter dan 2 m. Dit laatste komt doordat dienstplichtigen langer dan 2 m direct naar huis worden gestuurd; ze komen niet in de statistiek voor. Bovendien is het aantal mannen langer dan 2 m of korter dan 1.60 m zo klein dat de frequentie toch onzichtbaar klein zou zijn. Ten tweede heeft de frequentieverdeling een vrij regelmatig verloop, met één enkele top in het midden; het is een eentoppige en ook bijna een symmetrische verdeling. 1

2 Figuur 2 Frequentieverdeling van meisjes en jongens naar lichaamslengte (schematisch) Wat er gebeurt als meisjes ook voor de dienstplicht worden gekeurd, is schematisch weergegeven in figuur 2. Daarin zijn vloeiende krommen getekend in plaats van blokdiagrammen. Als de lengte van rekruten in heel kleine klassen van bijvoorbeeld een halve centimeter zou zijn gerapporteerd, vallen blokdiagram en vloeiende lijn (bijna) samen; het gebruik van een gladde kromme sluit aan bij de voorkeur die in de wiskunde bestaat voor vloeiende lijnen, zonder hoeken of breuken. We nemen aan dat de verdeling van de lengte voor meisjes dezelfde is als voor jongens, maar dan een eindje verschoven; volgroeide meisjes zijn over het geheel genomen ongeveer 10 cm korter dan jongens. Als men beide frequenties samenvoegt tot één enkele frequentieverdeling van de lichaamslengte van jonge mensen, dan krijgt men de frequentieverdeling volgens de stippellijn. Deze frequentieverdeling is breder dan die van jongens en meisjes apart en ze bestrijkt een groter interval. Om dat we alle verdelingen in één figuur zo tekenen dat hun hele oppervlakte van 100% even groot is, is de samengestelde verdeling ook lager. De verdeling wordt altijd breder en platter als uiteenlopende groepen worden samengevoegd, en smaller en spitser als ze voor een beperkte, homogene groep geldt. Dit zou bijvoorbeeld gelden voor de soldaten van een regiment grenadiers, die veel minder in lengte verschillen dan alle dienstplichtigen samen. Plaatsbepaling Voor sommige doeleinden is het nodig de hele frequentieverdeling te kennen, bijvoorbeeld als men schoenen of uniformen gaat inkopen voor een lichting (goedgekeurde) rekruten; vaak is het echter voldoende de verdeling samen te vatten in enkele kengetallen. De plaats van de verdeling op de getallenas kan worden aangegeven met het gemiddelde; we hadden zojuist ook kunnen schrijven dat meisjes gemiddeld 10 cm korter zijn dan jongens. Iedereen weet wel wat het gemiddelde is: de waargenomen getallen worden opgeteld en de som wordt gedeeld door hun aantal: gemiddelde = som (of totaal) gedeeld door aantal. De gemiddelde lengte van de dienstplichtigen is 181,2 cm, en dat komt overeen met het midden van de getekende verdeling. Het gemiddelde is eenvoudig te berekenen en heeft een aantal aantrekkelijke eigenschappen. In een lift hangt een bordje waarop staat aangegeven dat de maximale belasting gelijk is aan 6 personen of 500 kg. De fabrikant neemt blijkbaar aan dat de 2

3 mensen die in de lift stappen gemiddeld niet meer dan 83 kg wegen, al vermeldt hij voor de goede orde de grens ook nog eens in kilo's. Het gemiddelde is handig om een totaal te berekenen, bijvoorbeeld als men niet schoenen of uniformen, maar eten moet inslaan voor een groep rekruten (of voor een ander gezelschap), of als men het totale gewicht wil weten van de bagage van een groep reizigers. Deze voorbeelden geven aan dat het gemiddelde in dezelfde eenheden luidt als de waargenomen eigenschap (kilo's voedsel of bagage), en ook dat er niet één waarneming hoeft te zijn die precies met het gemiddelde overeenkomt. Soms is dat zelfs onmogelijk: het gemiddelde aantal kinderen dat een vrouw voortbrengt, is in ons land thans 1,5, maar er is geen enkele moeder met 1, 5 kinderen. Het gemiddelde is niet de enige maatstaf voor de plaats of centrale tendentie van een frequentieverdeling; men kan ook gebruik maken van de mediaan of de modus. Voor de mediaan geldt dat de helft van alle lengten eronder ligt en de helft erboven; de modus is de waarde (of beter: klasse) die het meest voorkomt, de 'top' van de verdeling. De mediaan is veel minder gevoelig voor een enkele extreme uitschieter dan het gemiddelde, de modus is gemakkelijk af te lezen en correspondeert met de meest gangbare waarde. Bij een regelmatige, symmetrische verdeling vallen gemiddelde, mediaan en modus praktisch samen: bij de gemiddelde lengte van dienstplichtigen van 181,2 cm vinden we een mediaan van 181,3 cm. De modus ligt ergens tussen 180 en 185 cm, en zou alleen bij een indeling in kleinere klassen (niet van 5 maar van 1 cm) preciezer kunnen worden bepaald. Figuur 3 Frequentieverdeling besteedbaar huishoudensinkomen naar samenstelling van het huishouden, 1990 (bron: CBS) Tegenover de nagenoeg symmetrische verdeling van de lengte van dienstplichtigen stellen we nu de inkomensverdeling in ons land. In figuur 3 staan frequentieverdelingen van het besteedbaar inkomen per huishouden in 1990, dat wil zeggen van het inkomen na aftrek van belasting en premies. Ook dit is een beschrijvende statistiek, die is samengesteld uit de gegevens van de belastingdienst. De indeling in inkomensklassen 3

4 van fl 2000,- per jaar is heel fijn, en we laten de schotten tussen de blokjes weg. De frequentieverdeling ziet er dan uit als een nogal beverig getrokken lijn. De verdeling van alle inkomens in de bovenste grafiek is niet zo regelmatig: er zijn twee toppen, en de verdeling is helemaal niet symmetrisch. Dit komt doordat de verdeling betrekking heeft op twee verschillende groepen: eenpersoonshuishoudens en meerpersoonshuishoudens, ieder met een heel verschillende inkomensverdeling. Dit lijkt enigszins op de lengte van jongens en van meisjes, met dit verschil dat de twee groepen nu niet even groot zijn. De eenpersoonshuishoudens maken slechts 30% van het totaal uit, en de kenmerken van hun inkomensverdeling (met streepjes getekend) komen daardoor slechts zwak tot uitdrukking in de inkomensverdeling van alle huishoudens samen. Het zijn grotendeels of jonge mensen, studenten, of alleenstaande bejaarden. Beide groepen hebben lage inkomens: de top ligt bij fl ,- (dat is dus de modus), en de verdeling daaromheen is erg smal, bijna symmetrisch, met een kleine piek in de buurt van het minimumloon. De inkomens- verdeling van de meerpersoonshuishoudens is daarentegen scheef, en wel scheef naar rechts: er zijn heel veel lage inkomens, zo tussen de 20 en 40 mille per jaar (besteedbaar inkomen), en daarnaast een lange staart van hoge en zeer hoge inkomens. Dit beeld weerspiegelt de maatschappelijke verhoudingen, maar het kan ook (mede) worden verklaard uit het feit dat er aan de bovenkant meer ruimte is voor extreme waarden dan aan de onderkant. Er is geen bovengrens aan het inkomen, wel een ondergrens in de buurt van het bestaansminimum; inkomens kleiner dan nul komen niet voor. Dergelijke scheve verdelingen vindt men wel meer bij grootheden die niet onder een bepaalde grens kunnen dalen (vaak is die grens nul), maar wel onbeperkt groot kunnen worden: het motorvermogen van auto's, het aantal sigaretten per dag van rokers of het aantal kamers van een woning. In een scheve verdeling vallen modus, mediaan en gemiddelde niet langer samen. Het gemiddelde besteedbaar inkomen van meerpersoonshuishoudens is fl ,-; de mediaan is fl ; en het inkomen van 'Jan Modaal' (gesteld dat hij een gezin heeft) is fl ,- (dit alles in 1990). Omdat het gemiddelde sterker dan de twee andere maatstaven gevoelig is voor extreme waarden, in dit geval: extreem hoge inkomens, ligt het gemiddelde inkomen boven de mediaan. Dit leidt tot het onverwachte resultaat dat meer dan de helft van de inkomens kleiner is dan het gemiddelde. Gemiddelde, modus en mediaan zijn alle drie plaatsbepalende grootheden van het verschijnsel dat wordt beschreven. Hun kenmerkende eigenschap is dat ze altijd meeschuiven als men alle gemeten getallen zou verschuiven. Telt men bij al deze getallen eenzelfde getal op, bijvoorbeeld doordat men bij de lengte van rekruten 5 cm optelt om rekening te houden met de helm die ze als soldaat zullen dragen, dan worden gemiddelde, modus en mediaan alle drie 5 cm groter. De gecumuleerde verdeling Voor sommige doeleinden is het handig bij de frequentieverdeling een gecumuleerde verdeling te construeren, zoals in figuur 4 is gedaan voor de lengte van dienstplichtigen. Deze grafiek geeft voor iedere lengte aan welk percentage van de groep kleiner is; de curve loopt dus altijd naar rechts op, van nul tot 100%. Het blokdiagram van figuur 1 leidt tot de gebroken lijn, waar een vloeiende lijn doorheen is getrokken, alsof de frequentieverdeling van de lengten voor heel veel kleine klassen bekend is. De mediaan kunnen we nu direct aflezen; het is het punt waarbij de gecumuleerde verdeling de waarde 50% heeft, in dit geval 181,3 cm. 4

5 Figuur 4 Gecumuleerde frequentieverdeling van dienstplichtigen naar lichaamslengte, 1990 (bron: CBS) De gecumuleerde verdeling geeft precies dezelfde gegevens weer als de frequentieverdeling, maar op een andere manier. Voor sommige doeleinden is ze handiger. Een fabrikant van stoelen voor auto's en vliegtuigen moet de maten niet afstemmen op gemiddelde of mediaan, want zijn stoelen zouden dan voor de helft van de mensen te klein zijn. Het is erger dat een stoel te klein is dan te groot, zodat hij maar beter grote stoelen kan bouwen; grote stoelen kosten echter meer materiaal en vragen meer ruimte. De fabrikant kan nu bijvoorbeeld de norm stellen dat niet meer dan 2,5% van de volwassen mannen zijn stoel te klein mag vinden. De lengte die bij deze grens hoort kan direct uit de gecumuleerde verdeling worden afgelezen: ze is 194,5 cm. Daarop moet de fabrikant zich dus richten. Spreiding We keren terug tot het geval dat men niet de hele frequentieverdeling wil of kan gebruiken en genoegen moet nemen met enkele kenmerkende kengetallen. Gemiddelde, mediaan en modus geven de plaats aan waar de verdeling zich bevindt, maar dat is niet voldoende: men zal vaak ook willen weten welke vorm de verdeling heeft, en vooral of ze plat en breed is, of hoog en smal (bedenk dat de totale oppervlakte altijd op dezelfde 100% uitkomt). De frequentieverdelingen van de lengte van jongens en meisjes van figuur 2 liggen niet op dezelfde plaats, maar hebben wel dezelfde vorm. De inkomensverdelingen van eenpersoonshuishoudens en meerpersoonshuishoudens van figuur 3 verschillen daarentegen niet alleen in plaats, maar ook in vorm. Meerpersoonshuishoudens hebben niet alleen grotere inkomens dan eenpersoonshuishoudens, maar ook lopen hun inkomens veel sterker uiteen. De mate waarin de afzonderlijke waarden verschillen, geven we weer met de spreiding. Plaatsbepalende grootheden schuiven met de waarnemingen mee als de gemeten getallen opschuiven; de maatstaf voor de spreiding moet dit echter juist niet doen. Telt men een vast getal op bij alle waargenomen getallen, dan verandert immers hun onderlinge afstand niet, en de afstand van iedere waarneming tot het gemiddelde ook 5

6 niet. Daarvan maken we bij de maatstaf voor de spreiding gebruik, zij het op een manier die op het eerste gezicht erg ingewikkeld is. Het recept voor de berekening van de spreiding luidt namelijk als volgt: 1. bepaal van iedere waarneming het verschil met het gemiddelde dat men eerst heeft berekend (dit verschil kan positief of negatief zijn) 2.,neem vervolgens het kwadraat van dit verschil 3. tel de kwadraten op 4. deel die som van kwadraten door het aantal waarnemingen, met andere woorden bepaal het gemiddelde van de kwadraten. De grootheid die men krijgt, heet de variantie, en de vierkantswortel van de variante heet de standaardafwijking. De verleiding is groot nu een getal ten voorbeeld te geven van de berekening van gemiddelde en standaardafwijking dat de lezer na kan rekenen; men vindt dit in de appendix bij dit hoofdstuk. Net zoals het gemiddelde luidt de standaardafwijking in dezelfde grootheid als de oorspronkelijke waarnemingen. Meet men de lengte van dienstplichtigen in centimeters, dan luiden gemiddelde en standaardafwijking ook in centimeters; bij het gemiddelde van 181,2 cm vinden we een standaardafwijking van 6,9 cm. Meet men de dienstplichtigen wat preciezer, in millimeters, dan zijn gemiddelde en standaardafwijking 1812 mm respectievelijk 69 mm. Vanwege deze eigenschap wordt de standaardafwijking vaker gebruikt dan de variantie. Net zoals bij de plaatsbepaling zijn er ook voor de spreiding verschillende maatstaven; de standaardafwijking wordt echter verreweg het meest gebruikt omdat ze de beste eigenschappen heeft. Eén van die eigenschappen staat al direct in de volgend paragraaf. Een statistische vuistregel Er is een heel eenvoudige vuistregel die aangeeft binnen welk grenzen waarnemingen met een gegeven gemiddelde en standaardafwijking terechtkomen. Deze grenzen worden door gemiddelde en spreiding bepaald. Ze luiden als volgt: ondergrens: het gemiddelde min tweemaal de standaardafwijking bovengrens: het gemiddelde plus tweemaal de standaardafwijking. Men kan aantonen dat tussen deze twee grenzen altijd ten minste 75% van de waarnemingen ligt. Voor de praktijk is deze theoretische uitspraak echter niet heel nuttig, want dan kan er altijd nog een kwart buiten de grenzen liggen en dat is (te) veel, Veel meer praktisch nut heeft de vuistregel. Als regel ligt ongeveer 95% van de waarnemingen binnen de aangegeven grenzen. We zullen deze regel in het vervolg vaak gebruiken; hij is van grote praktische betekenis. Uit gemiddelde en variantie van de lengte van dienstplichtigen volgt direct dat 5% kleiner is dan 181,2 - (2 x 6,9) = 167,4 cm, of groter dan 181,2 + (2 x 6,9) = 195,0 cm. Omdat de verdeling bijna symmetrisch is, zal dit wel eerlijk zijn verdeeld, en dan is 2,5% van de keurlingen groter dan 195 cm. Dit scheelt niet veel van de eerder voor deze grens gegeven waarde van 194,5; de stoelenfabrikant had dus heel goed de vuistregel kunnen gebruiken. Natuurlijk gaat deze verbazingwekkende regel niet altijd en overal op: het is niet voor niets een vuistregel, en er staat niet voor niets 'Als regel' en 'ongeveer'. Deze eigenschap van frequentieverdelingen berust niet op een wiskundige stelling, maar is een ervaringsfeit. Zolang de verdeling één top heeft en niet al te scheef is, kan men er goed mee werken; voor dit soort verdelingen vindt de vuistregel ondersteuning in de beschouwingen over de normale verdeling. 6

7 Berekening van gemiddelde en standaardafwijking Tegenwoordig rekent niemand gemiddelde en standaardafwijking meer 'met de hand' of met potlood en papier uit: computers en rekenmachines hebben dat werk overgenomen. Dit is een groot gemak, zeker als het aantal waarnemingen wat groter is. Toch geven we een voorbeeld hoe gemiddelde erin standaardafwijking uit vijf getallen worden berekend. Deze vijf getallen zijn de prijs in centen van een flesje bier van verschillende soorten. Als de lezer het voorbeeld narekent, zal hij de eigenschappen van gemiddelde en standaardafwijking beter begrijpen. Telt men bij alle getallen hetzelfde getal op (bijvoorbeeld het statiegeld van 15 cent), dan verandert het gemiddelde ook met 15 cent en de standaardafwijking verandert niet. Drukt men de prijs uit in guldens per zes flesjes, dan worden alle getallen met 0,06 vermenigvuldigd en gemiddelde en standaardafwijking beide ook. type prijs afwijking van kwadraat van Gemiddelde afwijking A B C D E som gemiddelde 105 Variantie 473,2 Standaardafwijking 21,75 De tabel heeft vier kolommen. De eerste geeft het soort bier aan (strikt nodig is dit gegeven niet), de tweede de waargenomen prijs. Deze prijzen worden opgeteld, de som wordt door 5 gedeeld, en dat is het gemiddelde. De volgende twee kolommen dienen voor de standaardafwijking. In kolom 3 staat het verschil van iedere prijs ten opzichte van het gemiddelde; som en gemiddelde van deze getallen zijn vanzelfsprekend nul. In de kolom daarnaast staan de kwadraten van deze getallen. Deze kwadraten worden opgeteld en de som wordt weer gedeeld door 5. Dit is de variantie. Tenslotte wordt uit de variantie de wortel getrokken en dat is de standaardafwijking. Volgens de statistische theorie is het bij sommige toepassingen beter om bij de berekening van de variantie de som van kwadraten niet te delen door het aantal waarnemingen (hier 5), maar door 1 minder, dat is 4. In dit voorbeeld zou dat verschil maken, maar bij een groter aantal waarnemingen is het verschil te verwaarlozen. 7

8 Kansverdelingen In het navolgende kijken we naar kansmechanismen met een getal als uitkomst: het cijfer van de roulette, het aantal ogen bij de worp met een of meer dobbelstenen, niet kruis of munt bij het gooien van een munt, maar het aantal keren kruis, dat bij één worp altijd nul of een is. De uitkomst is een getal en kan worden geordend en afgebeeld op de getallenas. Als we de kans op iedere mogelijke uitkomst aangeven met een staafje van overeenkomstige hoogte, dan ontstaat een grafiek die kansverdeling heet. Figuur 1 Kansverdeling van het aantal ogen bij worpen met een en met meer dobbelstenen In figuur 1 staan drie voorbeelden. De bovenste kansverdeling geldt voor de uitkomsten van de worp met één dobbelsteen; deze lopen van 1 tot 6, en ze hebben ieder kans 1/6. Daaronder staat de kansverdeling voor het aantal ogen uit een worp met twee dobbelstenen. Deze variabele loopt van 2, tot 12, en de kansen zijn niet gelijk. De verdeling voor drie worpen begint op een klokvorm te lijken. De kansverdelingen bestrijken alle mogelijke uitkomsten; deze zijn op dezelfde schaal getekend. De som van de kansen of de totale lengte van de staafjes is 1. Het bereik van de mogelijke uitkomsten neemt natuurlijk toe naarmate men meer dobbel- stenen 8

9 gebruikt, en daardoor wordt de verdeling breder. Uit een rechthoekige verdeling ontstaat eerst een nette piramide en vervolgens een verdeling met de vorm van een klok. De binomiale verdeling Dezelfde techniek kan worden gebruikt om de kans uit te rekenen op x keren kruis in een worp met n munten of n opeenvolgende worpen met één munt. De beschouwde munt kan een zuivere munt zijn met een kans van 0,5 op kruis, of een onzuivere munt met een kans van 0,6 op kruis en 0,4 op munt, of iedert andere toevalsvariabele die met een redelijke kans ieder var twee waarden kan aannemen. Deze verdeling heet de binomiaie verdeling. De plaats en vorm worden geheel bepaald door twee coëfficiënten, namelijk p, de kans op de gebeurtenis die al! een succes wordt geteld (hier:'kruis'), en n, het aantal worpen, of proeven. Het gemiddelde van x is n*p, de variantie n*p* (1 - p) de standaardafwijking de wortel daarvan. Als p gelijk is aan 0,5 is de verdeling symmetrisch, als p niet gelijk is aan 0,5 is de verdeling asymmetrisch - maar naarmate n toeneemt, wordt deze verdeling al snel ook bijna symmetrisch. In figuur 2 is de verdeling van het aantal malen 'kruis' bij worpen met een zuivere munt getekend voor drie verschillende waarden van n. Bij de grote waarden is voor het gemak een vloeiende lijn gebruikt in plaats van dicht op elkaar gepakte staafjes. Figuur 2 Kansverdeling voor het aantal malen kruis bij een verschillend aantal worpen met een munt 9

10 In deze voorstellingen is de uitkomst van het toevalsexperiment een variabele geworden en we noemen die een toevalsvariabe, en ook wel stochast of stochastische variabele (Engels: random variable). Een toevalsvariabele kan altijd verschillende waarde aannemen, en de kansverdeling of waarschijnlijkheidsverdeling geel aan hoe groot de kans op ieder van die waarden is. Dat bete kent dat de kans een functie is van de waarden die de toevals variabele kan aannemen, en die functie kan worden voorgesteld door een formule. Overeenkomst en verschil met een frequentieverdeling In figuur 1 staan de kansverdelingen van het aantal ogen uit worpen met een, twee of drie dobbelstenen, en men kan natuurlijk verder gaan met vier, vijf, enzovoort, dobbelstenen. In figuur 2 staan de kansverdelingen van het aantal keren kruis bij 10, 25 en 100 worpen met een munt. Beide figuren suggereren dat er, naarmate n toeneemt, een nette, symmetrische functie met één top ontstaat, en dat is ook zo. De verdeling zal op den duur dezelfde vorm krijgen als de frequentieverdeling van dienstplichtigen naar hun lengte, als we die tenminste ook met een vloeiende lijn zouden weergeven en niet met een blokdiagram. Kansverdeling en frequentieverdeling vertonen een aantal overeenkomsten. Beide bestaan uit een reeks staafjes (of blokjes) waarvan de lengte (of oppervlakte) tot 1 sommeert, en sommige frequentieverdelingen kunnen in vorm erg op bepaalde kansverdelingen lijken. Dit heeft het grote praktische voordeel dat de kansverdeling als benadering van de frequentieverdeling kan worden gebruikt. Men hoeft dan niet langer de hele tabel van de frequentieverdeling te raadplegen, maar kan direct gaan rekenen met de kansverdeling die doorgaans een vrij eenvoudige wiskundige vorm heeft. Ook hoort er bij iedere kansverdeling een gecumuleerde functie zoals die voor de frequentieverdeling van de lengte van rekruten. Dit is de waarschijnlijkheidsfunctie of verdelingsfunctie (probabilityfunction, distribution function) die aangeeft hoe groot de kans is dat de toevalsvariabele onder een bepaalde grens blijft.voor de worp met drie dobbelstenen is ze in figuur 3 getekend. 10

11 Figuur 3 Waarschijnlijkheidsfunctie voor het aantal ogen met drie dobbelstenen Een kansverdeling heeft net zoals een frequentieverdeling een gemiddelde en een standaardafwijking. Deze worden alleen niet langer berekend uit getallen, maar afgeleid uit de wiskundige functie die de verdeling beschrijft. Bovendien verandert de naam van het gemiddelde; men spreekt van de (mathematische) verwachting (expectation) van een toevalsvariabele.voor de spreiding blijft men echter variantie en standaardafwijking gebruiken. Net zoals bij de frequentieverdeling luiden gemiddelde en standaardafwijking in dezelfde eenheden als de toevalsvariabele zelf, en opnieuw hoeft het gemiddelde niet met een mogelijke uitkomst overeen te komen. De verwachting van het aantal ogen bij een worp met één dobbelsteen is 3,5, maar die uitkomst is onmogelijk en heeft kans nul. Er is één groot principieel verschil tussen de twee verdelingen: de frequentieverdeling is verkregen door waarnemingen te ordenen, de kansverdeling is afgeleid uit theoretische overwegingen. Een kansverdeling volgt uit een theoretisch model van het verschijnsel, met behulp van veronderstellingen over het toevalsmechanisme en rekenregels; ze kan nooit worden waargenomen. Verschillende soorten variabelen Door veel van de figuren die zijn getoond is de verleiding groot maar eens op te houden met die blokjes en staafjes en de kansverdeling altijd als een vloeiende lijn te tekenen. Bij de ogen van een dobbelsteen is dat strikt genomen niet toegestaan, want alleen de natuurlijke getallen van i tot 6 (of van 2 tot 12, van 3 tot i8, al naar gelang het aantal 11

12 stenen waarmee men werpt) kunnen voorkomen. Het is een discrete variabele, en de tussengelegen waarden zijn uitgesloten. De lichaamslengte van rekruten is daarentegen een continue variabele, die alle waarden tussen 160 en 200 cm kan aannemen. In de frequentieverdeling van de lengte van rekruten komt maar een eindig aantal waarden voor, op zijn hoogst evenveel als er mensen zijn gemeten, als ze zo precies worden gemeten dat er geen twee even lang zijn. Beschouwt men echter de lengte van één willekeurige keurling, dan kan die oneindig veel waarden aannemen, behoudens de precisie waarmee de lengte wordt gemeten. Als die op hele centimeters wordt afgerond, is de lengte weer een discrete variabele, die ongeveer 40 verschillende waarden kan aannemen, namelijk van 160 tot 200. Een discrete variabele wordt ook wel kwalitatieve variabele genoemd. Een voorbeeld is een variabele die aanduidt of iemand een man (waarde 0) of een vrouw is (waarde 1). Een continue variabele wordt ook wel kwantitatieve variabele genoemd (bijvoorbeeld geboortejaar). Een andere manier om variabelen in te delen is de volgende: Nominaal: nominale variabelen geven alleen een onderscheid aan (bijvoorbeeld geslacht man/vrouw) Ordinaal: ordinale variabelen geven ook een ordening aan (bijvoorbeeld opleidingsniveau) Interval: bij interval variabelen is er sprake van gelijke verschillen tussen de waardes (bijvoorbeeld intelligentiequotiënt) Ratio: bij ratio variabelen is er sprake van gelijke verschillen tussen de waardes en er is een natuurlijk nulpunt (bijvoorbeeld leeftijd) In figuur 4 wordt dit verduidelijkt aan de hand van voorbeelden. 12

13 Figuur 4: de as van preciesheid van variabelen 13

14 De normale verdeling Wat is de normale verdeling? De normale verdeling is een kansverdeling zoals die in het vorige hoofdstuk is besproken, en wel voor een continue toevalsvariabele. Het is dus een onderdeel van het statistisch model, en als zodanig een theoretische constructie, niet iets dat we rechtd treeks kunnen waarnemen. Op zichzelf is het niets anders dan een wiskundige functie, een dichtheid. Er zijn veel wiskundige functies die een dichtheid (kunnen) beschrijven (als ze maar nergens negatief zijn en het oppervlakte onder de functie 1 is); de normale dichtheid of verdeling van Gauss (1777~1855) is er daar één van. Deze verdeling wordt vaak gebruikt; veel, maar lang niet alle, grootheden zijn bij benadering normaal verdeeld. Het biijft echter een van de vele verdelingen, en men moet niet denken dat de verdeling een norm stelt, of dat de andere verdelingen in enig opzicht abnormaal zijn.wat dit aangaat, is de naam ongelukkig gekozen. De verdeling is trouwens ook niet door Gauss bedacht, maar wel door hem als eerste toegepast op een praktisch probleem, namelijk de berekening van de banen van hemellichamen. Gauss veronderstelde dat de afwijkingen normaal verdeeld waren. Figuur 5 Normale verdelingen De normale kansverdeling heeft de vorm van een klok. In figuur 5 hebben we er een aantal getekend voor verschillende toevalsvariabelen x; ze zullen de lezer bekend voorkomen, want de verdeling is al meer dan eens in figuren gebruikt zonder het erbij te 14

15 zeggen. De kansverdelingen verschillen in vorm en positie, maar de schaal is zo gekozen dat de oppervlakte onder de normale curve (die altijd met een kans van 100% correspondeert) voor de zes verdelingen even groot is. Iedere normale verdeling wordt geheel bepaald door twee coëfficiënten, de verwachting m 1 en de standaardafwijking s. Bij verdeling A van figuur 5 is aangegeven welke rol m en s spelen en hoe men de uit een getekende verdeling kan aflezen. De andere verdelingen zijn verkregen door m en s te variëren. De twee verdelingen van B hebben dezelfde standaardafwijking en dus ook dezelfde vorm, maar een andere verwachting: ze zijn ten opzichte van elkaar verschoven. C en D hebben dezelfde m, maar s is respectievelijk groot en klein: de verdeling wordt uitgerekt of in elkaar gedrukt. Welke waarden van m en s in feite van toepassing zijn, hangt af van het verschijnsel waarop de normale verdeling betrekking heeft en de eenheden waarin het wordt gemeten. Als het model bedoeld is voor de lichaamstemperatuur van gezonde mensen, dan zal men een m van 37 graden en een s van 0,1 graad kiezen;voor koortsige patiënten in een ziekenhuis ligt m echter hoger, en s vermoedelijk ook. Natuurlijk luiden m en s in dezelfde eenheden als het verschijnsel, namelijk in dit geval in graden Celsius; zouden we nog met de oude schaal van Fahrenheit werken, dan veranderen ze volgens de bekende regels. Ten slotte veranderen plaats en vorm van een getekende verdeling met de gebruikte schaal. Soms past men de twee coëfficiënten van de normale verdeling niet aan de eenheid van de toevalsvariabele aan, maar omge keerd de meeteenheid aan de verdeling, en wel zo dat m nul wordt en s één. Dit is de gestandaardiseerde normaal verdeelde toevalsvariabele, in figuur 5 getekend als E. Als x een normale verdeling met verwachting m en standaardafwijking s heeft, dan heeft (x - m)/s een standaardnormale verdeling.vroeger gebruikte men tabellen van de dichtheid en de verdelingsfunctie van deze verdeling; tegenwoordig leveren alle statistische computerprogramma's vlot de gewenste waarden. Door het argument met een vast getal te vermenigvuldigen en er een vast getal bij op te tellen, kan men er iedere andere normale verdeling uit construeren: s *(x - m)/s + m = x. Wil men een frequentieverdeling beschrijven met een norma le verdeling, dan kiest men daarvoor een aangepaste verdeling waarvan m en s overeenkomen met waargenomen gemiddelde en standaardafwijking. In figuur 6 is zo'n aangepaste dichtheid over de frequentieverdeling van de lichaamslengte van rekruten gelegd. 1 Ook vaak aangeduid met het symbool µ 15

16 Figuur 6 Aangepaste normale verdeling: de lichaamslengte van dienstplichtigen (bron: CBS) Eigenschappen van de normale verdeling Alle normale verdelingen hebben één top en zijn symmetrisch. De top ligt bij m en dat is dus niet alleen de verwachting of het (theoretisch) gemiddelde, maar ook de (theoretische) modus van de verdeling. De symmetrie rondom m betekent dat er van de totale oppervlakte onder de curve precies 50% onder m en 50% boven m ligt, en m is dus ook nog eens de (theoretische) mediaan. De standaardafwijking geeft de afstand aan van het midden tot de taille van de verdeling. Een en ander is aangege- ven in verdeling A van figuur 5. In de plaatjes van figuur 5 kan men ook zien dat de normale curve links en rechts tot de getallenas nadert, zonder deze ooit te raken; de wiskundige functie van de normale dichtheid kan zo klein worden als men maar wil, maar nul wordt ze nooit. In principe strekt de verdeling zich dus uit over de gehele getallenas, van min oneindig tot plus oneindig, en is er geen grens aan de waarden die de toevalsvariabele x kan bereiken, noch naar beneden noch naar boven. De oppervlakte onder de curve is wel begrensd en ze is 1 (of 100%), zoals voor een kansverdeling of dichtheid hoort. Daarvan ligt 95% tussen de grenzen m - 2*s en m + 2*s (of eigenlijk m + 1,96s en m - 1,96s); vanwege de symmetrie ligt er aan iedere kant 2,5% buiten de grens. Deze oppervlakten zijn in verdeling E van figuur 5 gearceerd. Voor de normale verdeling gaat de volgende vuistregel op: als regel ligt ongeveer 95% van de waarnemingen binnen de aangegeven grenzen. We noemen nog een wiskundige eigenschap van normaal verdeelde toevalsvariabelen, omdat die ertoe kan bijdragen dat men het vervolg gemakkelijker begrijpt: de som van twee normale toevalsvariabelen heeft zelf ook weer een normale verdeling. De centrale limietstelling Een verdeling kan op verschillende manieren worden verkregen, of uit de theorie, door een proces te bezien waar de ver deling uit volgt, of uit de praktijk, door een functie te beden ken die bepaalde waargenomen verschijnselen zo ongeveer beschrijft. Een veel gebruikte theoretische afleiding van de normale verdeling houdt in dat het de verdeling is van een som van vele onafhankelijke termen. Beschouw een groot aantal toevalsexperimenten die onafhankelijk van elkaar zijn, en tel de uitkomsten op. De som die zo wordt verkregen, is zelf ook weer een toevalsvariabele. Als het aantal elementen dat wordt opgeteld steeds verder toeneemt, nadert de verdeling van de som steeds dichter tot de normale dichtheid; in de limiet, voor een oneindig aantal termen, wordt de normale functie exact verkregen. 16

17 Een voorbeeld is de frequentie van kruis bij worpen met een zuivere munt. Het aantal keren kruis bij n worpen volgt een binomiale verdeling, maar het is tegelijkertijd de som van de uitkomsten van n onafhankelijke experimenten; als n maar groot genoeg is, moet het vrijwel normaal zijn verdeeld. Beide verdelingen gaan op: de binomiale verdeling is namelijk bij toenemende n nauwelijks te onderscheiden van de normale verdeling. Andere sommen van een (groot) aantal onafhankelijke toevalsvariabelen zijn op den duur ook normaal verdeeld. Voor worpen met een onzuivere munt is de binomiale verdeling asymmetrisch, maar naarmate n toeneemt, verdwijnt die scheefheid. Het gaat ook op voor de som van onafhankelijke uitkomsten van verschillende experimenten, mits die aan bepaalde voorwaarden voldoen, zoals langs wiskundige weg kan worden bewezen. Dit theoretische resultaat staat bekend als de centrale limietstelling. Proef op de som Net zoals voor de wet van de grote aantallen kan ook voor de centrale limietstelling worden nagegaan of de werkelijkheid in een concreet geval met het model klopt.voor de binomiale verdeling van worpen met een munt zouden we dan een groot aantal mensen aan het werk moeten zetten die ieder het experiment overdoen. Eerst werpen ze allemaal tienmaal met een munt, we noteren het aantal keren kruis van Ieder en maken een frequentieverdeling van die honderd getallen; daarna werpen ze honderdmaal en we noteren de uitkomsten op dezelfde wijze, enzovoort. Als de centrale limietstelling opgaat, zal de frequentieverdeling steeds meer op de normale verdeling gaan lijken naarmate het aantal experimenten van ieder van de deelnemers toeneemt. Voor het algemenere geval van de optelling van verschillende onafhankelijke toevalsvariabelen zou men kleine teams aan het werk kunnen zetten: de een werpt met een munt, een ander met een dobbelsteen, een derde raapt geblinddoekt een steentje uit het grind dat wordt gewogen, enzovoort. leder van de proeven wordt herhaald en de uitkomsten worden voor ieder team opgeteld. De eindresultaten van een groot aantal teams vormen een frequentieverdeling, en volgens de centrale limietstelling moet deze steeds meer op de normale verdeling gaan lijken naarmate het aantal experimenten van ieder team verder toeneemt. We hebben dit niet door mensen, maar door de computer laten doen (figuur 7). Er zijn vijf toevalsexperimenten gekozen waarvan de som van de uitkomsten niet netjes symmetrisch is verdeeld. In figuur 7 staat bovenaan de kansverdeling van deze som, en daaronder de verdeling van de som bij duizend herhalingen van het samengestelde experiment, of n = 5000 herhalingen van vijf verschillende proeven. Onderaan staat een blokdiagram van de normale verdeling. Alle blokdiagrammen zijn gestandaardiseerd op gemiddelde nul en standaardafwijking 1. Zoals men ziet gaat de verdeling op de normale verdeling lijken als n toeneemt; dit is in overeenstemming met de centrale limietstelling. 17

18 Figuur 7 Nabootsing door de computer van de centrale limietstelling Toepassingen Men kan normale verdelingen die in de praktijk optreden omgekeerd interpreteren als het resultaat van de centrale limietstelling. Dat zoveel verschijnselen bij benadering normaal verdeeld zijn, komt dan doordat ze de resultante zijn - of preciezer: de som van de inwerking van een groot aantal onafhankelijke factoren. Het gewicht van pakken koffie of boter is ondanks alle voorzorgen normaal verdeeld, zij het met een heel kleine spreiding; wat men ook doet, het lukt nooit volstrekt identieke producten af te leveren. In figuur 8 is de verdeling weergegeven van het gewicht van bijna 1000 muntplaatjes, schijfjes metaal die 's Rijks munt vervaardigt om er guldens van te maken. Deze moeten natuurlijk evenveel wegen, in dit geval 10 gram. Ondanks alle zorg die aan de productie wordt besteed blijkt bij uiterst nauwkeurige weging dat er toch verschillen het gewicht van de plaatjes optreden, en dat dit gewicht normaal verdeeld is. De verschillen zijn overigens wel erg klein: standaardafwijking is 22 milligram, dat is 2,2 duizendste van 1 gemiddelde gewicht, en volgens de vuistregel verschilt dus 9 van alle muntplaatjes niet meer dan 4,4 duizendste van het gemiddelde. Bij een ingewikkeld productieproces zijn de onvermijdelijke afwijkingen het gevolg van allerlei factoren die onafhankelijk van elkaar optreden, en daar komen dan nog eens meetfouten bij: vandaar de normale verdeling. Vanuit deze interpretatie noemt men de normale verdeling ook wel eens de foutenverdeling, en zo werd ze ook door Gauss gebruikt. 18

19 Figuur 8: Aangepaste normale verdeling: het gewicht van muntplaatjes 19

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012)

Antwoorden bij 4 - De normale verdeling vwo A/C (aug 2012) Antwoorden bij - De normale verdeling vwo A/C (aug 0) Opg. a Aflezen bij de 5,3 o C grafiek:,3% en bij de,9 o C grafiek: 33,3% b Het tweede percentage is 33,3 /,3 = 5, maal zo groot. c Bij de 5,3 o C grafiek

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

2 Data en datasets verwerken

2 Data en datasets verwerken Domein Statistiek en kansrekening havo A 2 Data en datasets verwerken 3 Frequentieverdelingen typeren 3.6 Geïntegreerd oefenen In opdracht van: Commissie Toekomst Wiskunde Onderwijs 3 Frequentieverdelingen

Nadere informatie

Statistiek I Samenvatting. Prof. dr. Carette

Statistiek I Samenvatting. Prof. dr. Carette Statistiek I Samenvatting Prof. dr. Carette Opleiding: bachelor of science in de Handelswetenschappen Academiejaar 2016 2017 Inhoudsopgave Hoofdstuk 1: Statistiek, gegevens en statistisch denken... 3 De

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Steekproefmodellen en normaal verdeelde steekproefgrootheden 5. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg

Nadere informatie

Data analyse Inleiding statistiek

Data analyse Inleiding statistiek Data analyse Inleiding statistiek 1 Doel Beheersen van elementaire statistische technieken Toepassen van deze technieken op aardwetenschappelijke data 2 1 Leerstof Boek: : Introductory Statistics, door

Nadere informatie

4.1 Eigenschappen van de normale verdeling [1]

4.1 Eigenschappen van de normale verdeling [1] 4.1 Eigenschappen van de normale verdeling [1] Relatief frequentiepolygoon van de lengte van mannen in 1968 1 4.1 Eigenschappen van de normale verdeling [1] In dit plaatje is een frequentiepolygoon getekend.

Nadere informatie

Examen Statistiek I Feedback

Examen Statistiek I Feedback Examen Statistiek I Feedback Bij elke vraag is alternatief A correct. Bij de trekking van een persoon uit een populatie beschouwt men de gebeurtenissen A (met bril), B (hooggeschoold) en C (mannelijk).

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 4. Het steekproefgemiddelde. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen 4. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Een concreet voorbeeld.... Een kansmodel

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 6 les 2

Wiskunde D Online uitwerking 4 VWO blok 6 les 2 Paragraaf 8 De klokvorm Opgave 1 a De top van de grafiek van de PvdA ligt bij 30 %. Dus voor de PvdA wordt 30% voorspeld. b De grafiek loopt van ongeveer 27 tot 33, dus het percentage ligt met grote waarschijnlijkheid

Nadere informatie

De normale verdeling

De normale verdeling De normale verdeling Les 2 De klokvorm en de normale verdeling (Deze les sluit aan bij paragraaf 8 en 9 van Binomiale en normale verdelingen van de Wageningse Methode) De grafische rekenmachine Vooraf

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde C. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek I Tjing Opgave 1. Het aantal hoofdstukken in de I Tjing correspondeert met het totale aantal

Nadere informatie

Samenvattingen 5HAVO Wiskunde A.

Samenvattingen 5HAVO Wiskunde A. Samenvattingen 5HAVO Wiskunde A. Boek 1 H7, Boek 2 H7&8 Martin@CH.TUdelft.NL Boek 2: H7. Verbanden (Recht) Evenredig Verband ( 1) Omgekeerd Evenredig Verband ( 1) Hyperbolisch Verband ( 2) Machtsverband

Nadere informatie

2.3 Frequentieverdelingen typeren

2.3 Frequentieverdelingen typeren 2.3 Frequentieverdelingen typeren 2.3.1 Introductie Kijkend naar een datarepresentatie valt meestal al snel op hoe de verdeling van de tellingen/frequenties over de verschillende waarden eruitziet. Zitten

Nadere informatie

Populaties beschrijven met kansmodellen

Populaties beschrijven met kansmodellen Populaties beschrijven met kansmodellen Prof. dr. Herman Callaert Deze tekst probeert, met voorbeelden, inzicht te geven in de manier waarop je in de statistiek populaties bestudeert. Dat doe je met kansmodellen.

Nadere informatie

Samenvatting Wiskunde Aantal onderwerpen

Samenvatting Wiskunde Aantal onderwerpen Samenvatting Wiskunde Aantal onderwerpen Samenvatting door een scholier 2378 woorden 4 juni 2005 5,1 222 keer beoordeeld Vak Wiskunde Gelijkvormigheid Bij vergroten of verkleinen van een figuur worden

Nadere informatie

Statistiek. Beschrijvend statistiek

Statistiek. Beschrijvend statistiek Statistiek Beschrijvend statistiek Verzameling van gegevens en beschrijvingen Populatie, steekproef Populatie = o de gehele groep ondervragen o parameter is een kerngetal Steekproef = o een onderdeel van

Nadere informatie

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram:

5.0 Voorkennis. Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: 5.0 Voorkennis Er zijn verschillende manieren om gegevens op een grafische wijze weer te geven: 1. Staafdiagram: De lengte van de staven komt overeen met de hoeveelheid; De staven staan meestal los van

Nadere informatie

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag

Practicum algemeen. 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag Practicum algemeen 1 Diagrammen maken 2 Lineair verband en evenredig verband 3 Het schrijven van een verslag 1 Diagrammen maken Onafhankelijke grootheid en afhankelijke grootheid In veel experimenten wordt

Nadere informatie

Feedback proefexamen Statistiek I 2009 2010

Feedback proefexamen Statistiek I 2009 2010 Feedback proefexamen Statistiek I 2009 2010 Het correcte antwoord wordt aangeduid door een sterretje. 1 Een steekproef van 400 personen bestaat uit 270 mannen en 130 vrouwen. Een derde van de mannen is

Nadere informatie

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn

Statistiek: Spreiding en dispersie 6/12/2013. dr. Brenda Casteleyn Statistiek: Spreiding en dispersie 6/12/2013 dr. Brenda Casteleyn dr. Brenda Casteleyn www.keu6.be Page 2 1. Theorie Met spreiding willen we in één getal uitdrukken hoe verspreid de gegevens zijn: in hoeveel

Nadere informatie

8. Analyseren van samenhang tussen categorische variabelen

8. Analyseren van samenhang tussen categorische variabelen 8. Analyseren van samenhang tussen categorische variabelen Er bestaat een samenhang tussen twee variabelen als de verdeling van de respons (afhankelijke) variabele verandert op het moment dat de waarde

Nadere informatie

Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen

Vandaag. Onderzoeksmethoden: Statistiek 2. Basisbegrippen. Theoretische kansverdelingen Vandaag Onderzoeksmethoden: Statistiek 2 Peter de Waal (gebaseerd op slides Peter de Waal, Marjan van den Akker) Departement Informatica Beta-faculteit, Universiteit Utrecht Theoretische kansverdelingen

Nadere informatie

Onderzoeksmethodiek LE: 2

Onderzoeksmethodiek LE: 2 Onderzoeksmethodiek LE: 2 3 Parameters en grootheden 3.1 Parameters Wat is een parameter? Een karakteristieke grootheid van een populatie Gem. gewicht van een 34-jarige man 3.2 Steekproefgrootheden Wat

Nadere informatie

Statistische variabelen. formuleblad

Statistische variabelen. formuleblad Statistische variabelen formuleblad 0. voorkennis Soorten variabelen Discreet of continu Bij kwantitatieve gegevens gaat het om meetbare gegeven, zoals temperatuur, snelheid of gewicht. Bij een discrete

Nadere informatie

Kerstvakantiecursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven HAVO kan niet korter

Kerstvakantiecursus. wiskunde A. Rekenregels voor vereenvoudigen. Voorbereidende opgaven HAVO kan niet korter Voorbereidende opgaven HAVO Kerstvakantiecursus wiskunde A Tips: Maak de voorbereidende opgaven voorin in een van de A4-schriften die je gaat gebruiken tijdens de cursus. Als een opdracht niet lukt, werk

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert

VOOR HET SECUNDAIR ONDERWIJS. Kansmodellen. 3. Populatie en steekproef. Werktekst voor de leerling. Prof. dr. Herman Callaert VOOR HET SECUNDAIR ONDERWIJS Kansmodellen. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg . Populatie: een intuïtieve definitie.... Een

Nadere informatie

Inleiding tot de meettheorie

Inleiding tot de meettheorie Inleiding tot de meettheorie Meten is het toekennen van cijfers aan voorwerpen. Koeien Koeien in een kudde, studenten in een auditorium, mensen met een bepaalde stoornis, leerlingen met meer dan 15 in

Nadere informatie

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening

Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Statistiek voor Natuurkunde Opgavenserie 1: Kansrekening Inleveren: 12 januari 2011, VOOR het college Afspraken Serie 1 mag gemaakt en ingeleverd worden in tweetallen. Schrijf duidelijk je naam, e-mail

Nadere informatie

8.1 Centrum- en spreidingsmaten [1]

8.1 Centrum- en spreidingsmaten [1] 8.1 Centrum- en spreidingsmaten [1] Gegeven zijn de volgende 10 waarnemingsgetallen: 1, 3, 3, 3, 4, 5, 6, 8, 8, 9 Het gemiddelde is: De mediaan is het middelste waarnemingsgetal als de getallen naar grootte

Nadere informatie

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015

Cursus TEO: Theorie en Empirisch Onderzoek. Practicum 2: Herhaling BIS 11 februari 2015 Cursus TEO: Theorie en Empirisch Onderzoek Practicum 2: Herhaling BIS 11 februari 2015 Centrale tendentie Centrale tendentie wordt meestal afgemeten aan twee maten: Mediaan: de middelste waarneming, 50%

Nadere informatie

Significante cijfers en meetonzekerheid

Significante cijfers en meetonzekerheid Inhoud Significante cijfers en meetonzekerheid... 2 Significante cijfers... 2 Wetenschappelijke notatie... 3 Meetonzekerheid... 3 Significante cijfers en meetonzekerheid... 4 Opgaven... 5 Opgave 1... 5

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 5 les 3

Wiskunde D Online uitwerking 4 VWO blok 5 les 3 Paragraaf 10 De standaard normale tabel Opgave 1 a Er geldt 20,1 16,6 = 3,5 C. Dit best wel een fors verschil, maar hoeft niet direct heel erg uitzonderlijk te zijn. b Er geldt 167 150 = 17. Dat valt buiten

Nadere informatie

Inleiding Applicatie Software - Statgraphics

Inleiding Applicatie Software - Statgraphics Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek /k 1/35 OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een

Nadere informatie

Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen.

Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen. Netwerkdiagram voor een project. AOA: Activities On Arrows - activiteiten op de pijlen. Opmerking vooraf. Een netwerk is een structuur die is opgebouwd met pijlen en knooppunten. Bij het opstellen van

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 1

Samenvatting Natuurkunde Hoofdstuk 1 Samenvatting Natuurkunde Hoofdstuk 1 Samenvatting door een scholier 1494 woorden 8 april 2014 7,8 97 keer beoordeeld Vak Methode Natuurkunde Systematische natuurkunde Grootheden en eenheden Kwalitatieve

Nadere informatie

Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2015. wiskunde C. tijdvak 2 woensdag 17 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2015 tijdvak 2 woensdag 17 juni 13.30-16.30 uur wiskunde C Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 22 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei Eindexamen VWO Wiskunde A. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 2012 Eindexamen VWO Wiskunde A Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Schroefas Opgave 1. In de figuur trekken we een lijn tussen 2600 tpm op de linkerschaal en

Nadere informatie

HOOFDSTUK I - INLEIDENDE BEGRIPPEN

HOOFDSTUK I - INLEIDENDE BEGRIPPEN HOOFDSTUK I - INLEIDENDE BEGRIPPEN 1.2 Kansveranderlijken en verdelingen 1 Veranderlijken Beschouw een toevallig experiment met uitkomstenverzameling V (eindig of oneindig), de verzameling van alle gebeurtenissen

Nadere informatie

Wiskunde A. Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur

Wiskunde A. Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur Wiskunde A Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 1 Woensdag 17 mei 13.30 16.30 uur 20 00 Als bij een vraag een verklaring, uitleg of berekening vereist is, worden aan het antwoord

Nadere informatie

Eindexamen wiskunde B1 havo 2007-I

Eindexamen wiskunde B1 havo 2007-I De wet van Moore Eén van de belangrijkste onderdelen van de computer is de chip. Een chip is een elektronische schakeling die uit vele duizenden transistors bestaat. Toch is een chip niet groter dan een

Nadere informatie

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur.

Tentamen Kansrekening en Statistiek (2WS04), dinsdag 17 juni 2008, van uur. Technische Universiteit Eindhoven Faculteit Wiskunde en Informatica Tentamen Kansrekening en Statistiek (2WS4, dinsdag 17 juni 28, van 9. 12. uur. Dit is een tentamen met gesloten boek. De uitwerkingen

Nadere informatie

Factor = het getal waarmee je de oude hoeveelheid moet vermenigvuldigen om een nieuwe hoeveelheid te krijgen.

Factor = het getal waarmee je de oude hoeveelheid moet vermenigvuldigen om een nieuwe hoeveelheid te krijgen. Samenvatting door een scholier 1569 woorden 23 juni 2017 5,8 6 keer beoordeeld Vak Methode Wiskunde Moderne wiskunde Wiskunde H1 t/m H5 Hoofdstuk 1 Factor = het getal waarmee je de oude hoeveelheid moet

Nadere informatie

Medische Statistiek Kansrekening

Medische Statistiek Kansrekening Medische Statistiek Kansrekening Medisch statistiek- kansrekening Hoorcollege 1 Uitkomstenruimte vaststellen Ook wel S of E. Bij dobbelsteen: E= {1,2,3,4,5,6} Een eindige uitkomstenreeks Bij het gooien

Nadere informatie

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek

Inleiding Applicatie Software - Statgraphics. Beschrijvende Statistiek Inleiding Applicatie Software - Statgraphics Beschrijvende Statistiek OPDRACHT OVER BESCHRIJVENDE STATISTIEK Beleggen Door een erfenis heeft een vriend van u onverwacht de beschikking over een klein kapitaaltje

Nadere informatie

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A.

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A. Grootheden en eenheden Kwalitatieve en kwantitatieve waarnemingen Een kwalitatieve waarneming is wanneer je meet zonder bijvoorbeeld een meetlat. Je ziet dat een paard hoger is dan een muis. Een kwantitatieve

Nadere informatie

Niet de hoogte, wel de oppervlakte. Aandachtspunten bij. - statistische technieken voor een continue veranderlijke

Niet de hoogte, wel de oppervlakte. Aandachtspunten bij. - statistische technieken voor een continue veranderlijke Niet de hoogte, wel de oppervlakte Prof. dr. Herman Callaert Aandachtspunten bij - statistische technieken voor een continue veranderlijke - de interpretatie van een histogram - de normale dichtheidsfunctie

Nadere informatie

Meten en experimenteren

Meten en experimenteren Meten en experimenteren Statistische verwerking van gegevens Een korte inleiding 3 oktober 006 Deel I Toevallige veranderlijken Steekproef Beschrijving van gegevens Histogram Gemiddelde en standaarddeviatie

Nadere informatie

vwo: Het maken van een natuurkunde-verslag vs 21062011

vwo: Het maken van een natuurkunde-verslag vs 21062011 Het maken van een verslag voor natuurkunde, vwo versie Deze tekst vind je op www.agtijmensen.nl: Een voorbeeld van een verslag Daar vind je ook een po of pws verslag dat wat uitgebreider is. Gebruik volledige

Nadere informatie

18.1 Intro. ANTWOORDENBOEK Cijfers in orde 1. b 1366 c d 81 e 111 f g 20 miljoen h i 51,3 j 225

18.1 Intro. ANTWOORDENBOEK Cijfers in orde 1. b 1366 c d 81 e 111 f g 20 miljoen h i 51,3 j 225 18.1 Intro 1 a 81 b 1366 c 115000 d 81 e 111 f 33000 g 20 miljoen h 25000 i 51,3 j 225 2 Handel, bevolking (geboorten, huwelijken,...), gezondheid, financiën (inkomsten, faillisementen,...), verkeer (aantallen

Nadere informatie

IJburgcollege Wiskunde A en C september 2017 Statistiek Opgavenboek 1 (noteer je uitwerkingen van de opdrachten in het Uitwerkingenboek 1)

IJburgcollege Wiskunde A en C september 2017 Statistiek Opgavenboek 1 (noteer je uitwerkingen van de opdrachten in het Uitwerkingenboek 1) IJburgcollege Wiskunde A en C september 2017 Statistiek Opgavenboek 1 (noteer je uitwerkingen van de opdrachten in het Uitwerkingenboek 1) 2. Herhaling Beschrijvende Statistiek. Old Faithful In Yellowstone

Nadere informatie

Netwerkdiagram voor een project. AON: Activities On Nodes - activiteiten op knooppunten

Netwerkdiagram voor een project. AON: Activities On Nodes - activiteiten op knooppunten Netwerkdiagram voor een project. AON: Activities On Nodes - activiteiten op knooppunten Opmerking vooraf. Een netwerk is een structuur die is opgebouwd met pijlen en knooppunten. Bij het opstellen van

Nadere informatie

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625.

3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. 3.1 Procenten [1] In 1994 zijn er 3070 groentewinkels in Nederland. In 2004 zijn dit er nog 1625. Absolute verandering = Aantal 2004 Aantal 1994 = 1625 3070 = -1445 Relatieve verandering = Nieuw Oud Aantal

Nadere informatie

Normale Verdeling Inleiding

Normale Verdeling Inleiding Normale Verdeling Inleiding Wisnet-hbo update maart 2010 1 De Normale verdeling De Normale Verdeling beschrijft het gedrag van een continue kansvariabele x. Om kansen te berekenen, moet de dichtheidsfunctie

Nadere informatie

Statistiek voor A.I. College 6. Donderdag 27 September

Statistiek voor A.I. College 6. Donderdag 27 September Statistiek voor A.I. College 6 Donderdag 27 September 1 / 1 2 Deductieve statistiek Kansrekening 2 / 1 Vraag: Afghanistan In het leger wordt uit een groep van 6 vrouwelijke en 14 mannelijke soldaten een

Nadere informatie

de dagelijkse energiebehoefte in kilocalorieën (kcal) en G het gewicht in kg.

de dagelijkse energiebehoefte in kilocalorieën (kcal) en G het gewicht in kg. Supersize me In de film Supersize Me besluit de hoofdpersoon, Morgan Spurlock, dertig dagen lang uitsluitend fastfood te eten. Op deze manier krijgt hij elke dag 5000 kcal aan energie binnen. Eerst wordt

Nadere informatie

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen. checklist SE1 wiskunde A.pdf

HAVO 4 wiskunde A. Een checklist is een opsomming van de dingen die je moet kennen en kunnen. checklist SE1 wiskunde A.pdf HAVO 4 wiskunde A Een checklist is een opsomming van de dingen die je moet kennen en kunnen. checklist SE1 wiskunde A.pdf 1. rekenregels en verhoudingen Ik kan breuken vermenigvuldigen en delen. Ik ken

Nadere informatie

Kansrekening en Statistiek

Kansrekening en Statistiek Kansrekening en Statistiek College 8 Donderdag 13 Oktober 1 / 23 2 Statistiek Vandaag: Stochast en populatie Experimenten herhalen Wet van de Grote Getallen Centrale Limietstelling 2 / 23 Stochast en populatie

Nadere informatie

Examen VWO. wiskunde A1. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde A1. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2008 tijdvak 2 woensdag 18 juni 13.30-16.30 uur wiskunde A1 Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 20 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor

Nadere informatie

Eindexamen wiskunde B havo II

Eindexamen wiskunde B havo II Tonregel van Kepler In het verleden gebruikte men vaak een ton voor het opslaan en vervoeren van goederen. Tonnen worden ook nu nog gebruikt voor bijvoorbeeld de opslag van wijn. Zie de foto. foto Voor

Nadere informatie

4900 snelheid = = 50 m/s Grootheden en eenheden. Havo 4 Hoofdstuk 1 Uitwerkingen

4900 snelheid = = 50 m/s Grootheden en eenheden. Havo 4 Hoofdstuk 1 Uitwerkingen 1.1 Grootheden en eenheden Opgave 1 a Kwantitatieve metingen zijn metingen waarbij je de waarneming uitdrukt in een getal, meestal met een eenheid. De volgende metingen zijn kwantitatief: het aantal kinderen

Nadere informatie

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht.

In de Theorie worden de begrippen toevalsvariabele, kansverdeling en verwachtingswaarde toegelicht. Toevalsvariabelen Verkennen www.mathall.nl MAThADORE-basic HAVO/VWO /5/6 VWO wi-a Kansrekening Toevalsvariabelen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg www.mathall.nl MAThADORE-basic

Nadere informatie

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel.

9.0 Voorkennis. Bij samengestelde kansexperimenten maak je gebruik van de productregel. 9.0 Voorkennis Bij samengestelde kansexperimenten maak je gebruik van de productregel. Productregel: Voor de gebeurtenis G 1 bij het ene kansexperiment en de gebeurtenis G 2 bij het andere kansexperiment

Nadere informatie

GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben.

GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben. Leerroute 3 Jaargroep: 8 GETALLEN Onderdeel: Getalbegrip Doel: Je bewust zijn dat getallen verschillende betekenissen hebben. Je bewust zijn dat getallen verschillende betekenissen kunnen hebben. (hoeveelheidsgetal,

Nadere informatie

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden. EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Verwachtingswaarde, Variantie en Standaarddeviatie

Verwachtingswaarde, Variantie en Standaarddeviatie Verwachtingswaarde, Variantie en Standaarddeviatie Wisnet-hbo Verwachtingswaarde update maart 200 De verwachtingswaarde van een kansvariabele is een soort gemiddelde waarde. Deze wordt aangeduid met E(k)

Nadere informatie

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c

1 a Partij is een kwalitatieve variabele, kindertal een kwantitatieve, discrete variabele. b,c Hoofdstuk 8, Statistische maten 1 Hoofdstuk 8 Statistische maten Kern 1 Centrum- en spreidingsmaten 1 a Partij is een kwalitatieve variaele, kindertal een kwantitatieve, discrete variaele.,c d kindertal

Nadere informatie

Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8

Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8 Samenvatting Wiskunde Samenvatting en stappenplan van hfst. 7 en 8 Samenvatting door N. 1410 woorden 6 januari 2013 5,4 13 keer beoordeeld Vak Methode Wiskunde Getal en Ruimte 7.1 toenamediagrammen Interval

Nadere informatie

Eindexamen wiskunde A1-2 compex vwo I

Eindexamen wiskunde A1-2 compex vwo I Eindexamen wiskunde A1-2 compex vwo 29 - I Tijdens dit examen werk je in Excel. Door in het openingsscherm op Excel werkbladen te klikken start Excel automatisch op. Je komt dan meteen in het eerste werkblad

Nadere informatie

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1

Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 Hoeveel vertrouwen heb ik in mijn onderzoek en conclusie? Les 1 1 Onderwerpen van de lessenserie: De Normale Verdeling Nul- en Alternatieve-hypothese ( - en -fout) Steekproeven Statistisch toetsen Grafisch

Nadere informatie

VOOR HET SECUNDAIR ONDERWIJS

VOOR HET SECUNDAIR ONDERWIJS VOOR HET SECUNDAIR ONDERWIJS Populatiemodellen en normaal verdeelde populaties 3. Werktekst voor de leerling Prof. dr. Herman Callaert Hans Bekaert Cecile Goethals Lies Provoost Marc Vancaudenberg 1. Een

Nadere informatie

Lesbrief de normale verdeling

Lesbrief de normale verdeling Lesbrief de normale verdeling 2010 Willem van Ravenstein Inhoudsopgave Inhoudsopgave... 1 Hoofdstuk 1 de normale verdeling... 2 Hoofdstuk 2 meer over de normale verdeling... 11 Hoofdstuk 3 de n-wet...

Nadere informatie

werkcollege 5 - P&D7: Population distributions - P&D8: Sampling variability and Sampling distributions

werkcollege 5 - P&D7: Population distributions - P&D8: Sampling variability and Sampling distributions cursus 4 mei 2012 werkcollege 5 - P&D7: Population distributions - P&D8: Sampling variability and Sampling distributions Huiswerk P&D, opgaven Chapter 6: 9, 19, 25, 33 P&D, opgaven Appendix A: 1, 9 doen

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 20 tijdvak 2 woensdag 22 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk

Nadere informatie

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent

Hoofdstuk 2 : Grafische beschrijving van data. Marnix Van Daele. Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Hoofdstuk 2 : Grafische beschrijving van data Marnix Van Daele Marnix.VanDaele@UGent.be Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Grafische beschrijving van data p. 1/35 Soorten meetwaarden

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Examen HAVO. Wiskunde A1,2

Examen HAVO. Wiskunde A1,2 Wiskunde A1,2 Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 1 Donderdag 25 mei 13.30 16.30 uur 20 00 Dit examen bestaat uit 19 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een

Nadere informatie

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t

META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t META-kaart domein - Exponentieel verband havo4 wiskunde A H=bxg^t Welk verband zie ik tussen de gegeven informatie en wat er gevraagd wordt? Wat heb ik nodig? Heb ik de gegevens uit de tekst gehaald? Welke

Nadere informatie

Statistiek: Herhaling en aanvulling

Statistiek: Herhaling en aanvulling Statistiek: Herhaling en aanvulling 11 mei 2009 1 Algemeen Statistiek is de wetenschap die beschrijft hoe we gegevens kunnen verzamelen, verwerken en analyseren om een beter inzicht te krijgen in de aard,

Nadere informatie

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur

Kansrekening en statistiek WI2105IN deel I 4 november 2011, uur Kansrekening en statistiek WI05IN deel I 4 november 0, 4.00 7.00 uur Bij dit examen is het gebruik van een (evt. grafische) rekenmachine toegestaan. Een formuleblad wordt uitgereikt. Meerkeuzevragen Toelichting:

Nadere informatie

14.1 Kansberekeningen [1]

14.1 Kansberekeningen [1] 14.1 Kansberekeningen [1] Herhaling kansberekeningen: Somregel: Als de gebeurtenissen G 1 en G 2 geen gemeenschappelijke uitkomsten hebben geldt: P(G 1 of G 2 ) = P(G 1 ) + P(G 2 ) B.v. P(3 of 4 gooien

Nadere informatie

META-kaart vwo5 wiskunde A - domein Afgeleide functies

META-kaart vwo5 wiskunde A - domein Afgeleide functies META-kaart vwo5 wiskunde A - domein Afgeleide functies Wat heb ik nodig: GR of afgeleide? Hoe ziet de grafiek eruit? Moet ik de afgeleide berekenen? Kan ik bij deze functie de afgeleide berekenen? Welke

Nadere informatie

DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO

DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO DEEL II DOEN! - Praktische opdracht statistiek WA- 4HAVO Leerlingmateriaal 1. Doel van de praktische opdracht Het doel van deze praktische opdracht is om de theorie uit je boek te verbinden met de data

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail

Wiskunde De Normale en Binomiale Verdeling. Geschreven door P.F.Lammertsma voor mijn lieve Avigail Wiskunde De Normale en Binomiale Verdeling Geschreven door P.F.Lammertsma voor mijn lieve Avigail Opmerkingen vooraf Wiskunde Pagina 2 uit 20 Opmerkingen vooraf Pak je rekenmachine, de TI-83, erbij en

Nadere informatie

Examen HAVO. wiskunde B1

Examen HAVO. wiskunde B1 wiskunde B Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak Donderdag 3 juni 3.30 6.30 uur 20 04 Voor dit examen zijn maximaal 8 punten te behalen; het examen bestaat uit 2 vragen. Voor elk vraagnummer

Nadere informatie

36, P (5) = 4 36, P (12) = 1

36, P (5) = 4 36, P (12) = 1 Les 2 Kansverdelingen We hebben in het begin gesteld dat we de kans voor een zekere gunstige uitkomst berekenen als het aantal gunstige uitkomsten gedeelt door het totale aantal mogelijke uitkomsten. Maar

Nadere informatie

Hoofdstuk 5: Steekproevendistributies

Hoofdstuk 5: Steekproevendistributies Hoofdstuk 5: Steekproevendistributies Inleiding Statistische gevolgtrekkingen worden gebruikt om conclusies over een populatie of proces te trekken op basis van data. Deze data wordt samengevat door middel

Nadere informatie

Optellen van twee getallen onder de 10

Optellen van twee getallen onder de 10 Splitsen tot 0 uit het hoofd 2 Optellen 2 7 6 2 5 3 4 Splitsen tot 20 3 2 8 7 2 6 3 5 4 4 4 3 2 2 9 8 2 7 3 6 4 5 5 4 2 3 0 9 2 8 3 7 4 6 5 5 6 5 2 4 3 3 Bij een aantal iets erbij doen heet optellen. Je

Nadere informatie

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R

Tentamenset A. 2. Welke van de volgende beweringen is waar? c. N R N d. R Z R Tentamenset A. Gegeven de volgende verzamelingen A en B. A is de verzameling van alle gehele getallen tussen de 0 en 0 die deelbaar zijn door, en B is de verzameling gehele positieve getallen deelbaar

Nadere informatie

Overzicht statistiek 5N4p

Overzicht statistiek 5N4p Overzicht statistiek 5N4p EEB2 GGHM2012 Inhoud 1 Frequenties, absoluut en relatief... 3 1.1 Frequentietabel... 3 1.2 Absolute en relatieve frequentie... 3 1.3 Cumulatieve frequentie... 4 2 Centrum en spreiding...

Nadere informatie

Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling

Voorbeeld 1: kansverdeling discrete stochast discrete kansverdeling 12.0 Voorkennis Voorbeeld 1: Yvette pakt vier knikkers uit een vaas waar er 20 inzitten. 9 van de knikkers zijn rood en 11 van de knikkers zijn blauw. X = het aantal rode knikkers dat Yvette pakt. Er zijn

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing

G0N11a Statistiek en data-analyse: project Eerste zittijd Modeloplossing G0N11a Statistiek en data-analyse: project Eerste zittijd 2007-2008 Modeloplossing Opmerking vooraf: Deze modeloplossing is een heel volledig antwoord op de gestelde vragen. Om de maximumscore op een vraag

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling.

6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. Opgaven hoofdstuk 6 I Basistechnieken 6.1 Beschouw de populatie die beschreven wordt door onderstaande kansverdeling. x 0 2 4 6 p(x) ¼ ¼ ¼ ¼ a. Schrijf alle mogelijke verschillende steekproeven van n =

Nadere informatie

Vendorrating: statistische presentatiemiddelen

Vendorrating: statistische presentatiemiddelen pag.: 1 van 6 Vendorrating: statistische presentatiemiddelen Hieronder bespreken we in het kort een aantal verschillende presentatievormen waarmee we vendorratingresultaten op een duidelijke manier kunnen

Nadere informatie

Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2

Statistiek. Beschrijvende Statistiek Hoofdstuk 1 1.1, 1.2, 1.5, 1.6 lezen 1.3, 1.4 Les 1 Hoofdstuk 2 2.1, 2.3, 2.5 Les 2 INHOUDSOPGAVE Leswijzer...3 Beschrijvende Statistiek...3 Kansberekening...3 Inductieve statistiek, inferentiele statistiek...3 Hoofdstuk...3. Drie deelgebieden...3. Frequentieverdeling....3. Frequentieverdeling....4.5

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie