De leraar fysica als goochelaar. lesvoorbeeld: harmonische trillingen

Maat: px
Weergave met pagina beginnen:

Download "De leraar fysica als goochelaar. lesvoorbeeld: harmonische trillingen"

Transcriptie

1 De leraar fysica als goochelaar lesvoorbeeld: harmonische trillingen Stan Wouters Docent Fysica aan de Faculteit Industriële Ingenieurs Fi² (= KHLim en Xios) VLAAMS CONGRES VAN LERAARS WETENSCHAPPEN zaterdag 17 november 01

2 Loopbaan zie 1987: assistent Fysica en Mechanica 1997: lector toegepaste informatica 000: docent Fysica en lector toegepaste informatica Fysica: digitale cursus doorlopen (geen succes) digitale cursus met afleidingen op bord presentaties (dient als rode draad) afleidingen op bord, proeven, rekenbladen, applets en video-filmpjes zaterdag 17 november 01

3 Inhoud les01: Trillingen (H14: Giancoli Ned) Wet van Hooke Trillingen van een veer Enkelvoudige harmonische beweging Energie in de enkelvoudige harmonische oscillator Verband tussen enkelvoudige harmonische beweging en eenparige cirkelbeweging De enkelvoudige slinger De fysische slinger en de *torsieslinger *De dobber Gedempte harmonische beweging *Gedwongen trillingen; resonantie Overzicht *Combinaties van 'loodrechte' harmonischen *Combinaties van 'evenwijdige' harmonischen zaterdag 17 november 01 Robert Hooke ( ) 3

4 Wet van Hooke Wet van Hooke: F uit =k x Spannings-vervormingsdiagram (zie F ΔL =E A L0 Opmeten met sensoren en spelen met veerconstante zaterdag 17 november 01 4

5 Trillingen van een veer Horizontale beweging = F uit net voor het loslaten van F Terugroepkracht: F uit k (N/m) krachtconstante of veerconstante afhankelijk van de elasticiteit van de veer (Opmeten met sensoren) evenwichtspositie x = 0 amplitude A (m): de maximale uitwijking periode T0(s): de tijd voor één heen en weer gaande beweging frequentie f0 = 1/T0 (Hz): het aantal heen en weer gaande bewegingen per seconde zaterdag 17 november 01 5

6 Trillingen van een veer () Horizontale beweging zaterdag 17 november 01 + F z + F v =m N a x -component: F v = m a y -component: N F z =0 N F z a F v N F z x -component: F v =ma d x x -component: kx=m( ) d x k + x=0 m 6

7 Trillingen van een veer (3) Verticale beweging: A en B in evenwicht A B C 0 i F v L0 L1 m x' L m F z x F v + F z= 0 F v i +F z i =0 i F v +F z =0 k (L1 L0)+m g =0 zaterdag 17 november 01 a F z F 'v ' F v + F z=m a ' F v +F z= ma k (L L0 )+mg = ma k (L L1 ) k (L1 L0 )+mg = ma k (L L 1)= m a d x' k x ' = m( ) d x' k + x ' =0 m 7

8 Enkelvoudige harmonische beweging Verticale of horizontale beweging d x k de bewegingsvergelijking: + x=0 m k de eigenfrequentie of pulsatie (rad/s): ω 0= m de veerconstante k en de massa m worden gemeten de bewegingsfunctie: x (t)= Acos (ω 0 t+ϕ 0 ) kan ook x (t)= Asin (ω 0 t+ϕ 0) de uitwijking x van de massa m als functie van de tijd t de fase ω0t + φ0 en de beginfase φ0 in radialen π periodiciteit in de tijd: T 0= ω0 snelheid v(m/s) dx v= = ω0 A sin(ω 0 t +ϕ 0 ) versnelling a(m/s²): (zie rekenblad voor het faseverschil) d x a= = ω 0 A cos(ω 0 t +ϕ 0 )= ω 0 x zaterdag 17 november 01 8

9 Enkelvoudige harmonische beweging () Behoud van energie: 1 1 mv m v1 =Δ E k = Δ E p= i W i Horizontale beweging arbeid door de veerkracht bij het uitrekken van een veer: 1 W Fv = F v. d r = 0 F v dx= k 0 x dx= k x x x de potentiële energie in de veer is: 1 1 ( E pv E pv1 )= k x of E pv = k x en E pv1=0 J totale mechanische energie: 1 1 E tot =E k +E pv= m v + k x 1 1 E tot = m( Aω 0 sin (ω 0 t +ϕ 0)) + k ( Acos (ω 0 t +ϕ 0 )) 1 E tot = k A zaterdag 17 november 01 9

10 Enkelvoudige harmonische beweging () Verticale beweging arbeid door het gravitatieveld bij een verplaatsing 0 y: y y W Fz = F z. d r = 0 F z dy= mg 0 dy = mgy de potentiële energie in het gravitatieveld: ( E pz E pz1 )= mgy of E pz =mgy en E pz1=0 J totale mechanische energie: 1 1 E tot =E k +E pv +E pz = mv + k y +m g y (nameten of Etot behouden blijft) opgelet: y moet voor Epv de totale verlenging zijn Zie ook applet slinger en tikbal zaterdag 17 november 01 10

11 Verband tussen enkelvoudige harmonische beweging en eenparige cirkelbeweging Zie applet op Enkel de positie-fasor kennen! zaterdag 17 november 01 11

12 De enkelvoudige slinger eigenfrequentie g ω 0= L Demo 08-17: Pendulum with Large Amplitude zaterdag 17 november 01 1

13 De fysische slinger eigenfrequentie ω 0= mgd I Demo 08-18: Physical Pendulum zaterdag 17 november 01 13

14 De torsieslinger eigenfrequentie ω 0= C I L Demo 08-13: Torsion Pendulum zaterdag 17 november 01 θ0 +θ0 14

15 *De dobber eigenfrequentie zaterdag 17 november 01 D ρwg ω 0= aρ a ρw ρ m G 15

16 Gedempte harmonische beweging zaterdag 17 november 01 16

17 Gedempte harmonische beweging () F w = b v Wrijvingskracht: met de wrijvingsconstante b(kg/s) d x b dx k + + x=0 Bewegingsvergelijking: γ t m m Bewegingsfunctie: x (t)= Ae cos( ω ' t+ϕ ' ) Hoekfrequentie: ω'(rad/s): ω ' = ω 0 γ Dempingsconstante γ(1/kg): γ =b/ m Speciale gevallen: kromme 1 γ < ω0: periodisch (kromme 1) γ = ω0: kritisch aperiodisch (kromme ) γ > ω0: aperiodisch (kromme 3) Relaxatietijd τ (s): τ =1 / γ Kwaliteitsfactor Q(/): Q=ω 0 / γ zaterdag 17 november 01 y(t) kromme kromme 3 T 17

18 Applet, berekeningen en metingen Applet: γ t x (t)= Ae cos( ω ' t+ϕ ' ) Berekeningen in harmonische trillingen.xls Metingen met Pasco sensoren zaterdag 17 november 01 18

19 *Gedwongen trillingen; resonantie d x b dx k F (t ) + + x= bewegingsvergelijking: m m m aandrijfkracht F (N): F (t )=F 0 cos ω t bewegingsfunctie: x (t )= Asin (ω t+ϕ ) ( ω0 ω ) beginfase φ = φ(ω) : tan ϕ = γ ω F0 F0 A= ωzm amplitude A = A(ω): Metingen met sensoren op film en rekenblad snelheid v(m/s): v (t )=ωa cos(ωt+ϕ ) amplitude-resonantie: ω = ω 0 γ ωr snelheids-resonantie: ω =ω 0 Kortfilm: Tacoma bridge 1940 en video-film: Demo glass zaterdag 17 november 01 A= m ω ω0 ω V =ωa 19

20 Gedwongen trillingen - resonantie() het faseverschil tussen de uitwijking van de massa en de aandrijfkracht als functie van de opgelegde pulsatie voor 3 wrijvingsconstantes b1 < b < b3 φ ( ) beginfase: faseverschil ( ω0 ω ) tan ϕ = γ ω 90 A weinig wrijving B wrijving C veel wrijving w de amplitude van de massa als functie van de opgelegde pulsatie voor 3 wrijvingsconstantes b1 < b < b3 amplitude A(m) 0,010 A -90 A weinig wrijving B wrijving C veel wrijving w0 0,009 0,008 de snelheid van de massa als functie van de opgelegde pulsatie voor 3 wrijvingsconstantes b1 < b < b3 ω (rad/s) pulsatie 0,1 snelheidv(m/s) 5Fo/k 0,007 A weinig wrijving B wrijving C veel wrijving w0 0,1 0,08 0,006 0,06 0,005 Fo/k 0,04 0,004 0,003 0,0 0,00 amplitude: A= 0 0,001 ω F0 m ω ω ω zaterdag 17 november snelheids-amplitude: 5 pulsatie ω (rad/s) 0 10 pulsatie ω (rad/s) 0,000 5 V= ω F0 m ω ω0 ω 0

21 Overzicht trilling bewegingsvergelijking bewegingsfunctie x(t) vrij gedempt dx +ω0 x=0 Acos (ω 0 t +ϕ 0 ) dx dx + γ +ω 0 x=0 A(t )cos (ω ' t +ϕ ' ) γ t amplitude A=c te A(t )=A0 e beginfase ϕ 0 =c te ϕ ' =c te ω0 ω ' = ω 0 γ pulsatie frequentie periode zaterdag 17 november 01 gedwongen (gedempt) d x dx F (t ) + γ +ω 0 x= m A( ω ) sin(ω t +ϕ ) A( ω )= F0 m ( γ ω )+( ω 0 ω ) ( ω ω 0 ) tg( ϕ )= γ ω ω = pulsatie van de aandrijfkracht f 0=ω 0 / π f ' =ω ' / π f =ω / π T 0=1/ f T ' =1/ f ' T =1/ f 0 1

22 Combinaties van 'loodrechte' harmonischen Gelijke frequenties: x t = Asin t y t =B sin t Het resultaat van de samengestelde trilling beschrijft de baan van een ellips: x y xy A B AB cos =sin Speciale gevallen: B x A B y= x A φ = 0: rechte in het 1e en 3e quadrant φ = π: rechte in het e en 4e quadrant φ = π/: ellips met hoofdassen XY, als A = B cirkel y= x y =1 A B φ = 3π/: idem maar andere omloopzin zaterdag 17 november 01

23 Combinaties van 'evenwijdige' harmonischen Gelijke frequenties: x 1 t = A1 sin t 1 x t = A sin t Het resultaat is opnieuw een beweging volgens de X-as met dezelfde frequentie namelijk x(t) = A sin( t+φ) met: A= A1 A A 1 A cos 1 tg = Speciale gevallen φ - φ1 = 0: in fase zaterdag 17 november 01 A1 sin 1 A sin A1 cos 1 A cos φ - φ1 = π: in tegenfase 3

24 Combinaties van 'loodrechte' harmonischen () Verschillende frequenties: x t = Asin 1 t 1 y t =B sin t Het resultaat van de samengestelde trilling beschrijft de baan van een Lissajous-figuur: Jules Antoine Lissajous ( ) zaterdag 17 november 01 4

25 Combinaties van 'evenwijdige' harmonischen () Weinig verschillende frequenties: x 1 t = A1 sin 1 t x t = A sin t Het resultaat is een amplitude gemoduleerde beweging volgens de X-as met een gemiddelde frequentie namelijk: x(t) = A(t) sin( t+φ(t)) waarbij: 1 = A t = A1 A A 1 A cos t A A1 t = 1 tg t = tg A A1 Speciaal geval A1=A=A: x(t) = A cos( t sin t Zwevingen: periodieke amplitude verandering zaterdag 17 november 01 Δf = ω ω1 π = f f 1 5

Essential University Physics Richard Wolfson 2 nd Edition

Essential University Physics Richard Wolfson 2 nd Edition Chapter Hoofdstuk 13 13 Lecture Essential University Physics Richard Wolfson nd Edition Trillingen Slide 13-1 13.1 Trillingen Een systeem voert een trilling uit (of oscilleert) als het een periodieke beweging

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Golven. 25 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Fysica: Golven. 25 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Fsica: Golven 25 juli 2015 dr. Brenda Castelen Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fsica/wiskunde/wiskunde.htm), Leen

Nadere informatie

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen

1 VRIJE TRILLINGEN 1.0 INLEIDING 1.1 HARMONISCHE OSCILLATOREN. 1.1.1 het massa-veersysteem. Hoofdstuk 1 - Vrije trillingen 1 VRIJE TRILLINGEN 1.0 INLEIDING Veel fysische systemen, van groot tot klein, mechanisch en elektrisch, kunnen trillingen uitvoeren. Daarom is in de natuurkunde het bestuderen van trillingen van groot

Nadere informatie

m C Trillingen Harmonische trilling Wiskundig intermezzo

m C Trillingen Harmonische trilling Wiskundig intermezzo rillingen http://nl.wikipedia.org/wiki/bestand:simple_harmonic_oscillator.gif http://upload.wikimedia.org/wikipedia/commons/7/74/simple_harmonic_motion_animation.gif Samenvatting bladzijde 110: rilling

Nadere informatie

Uitwerkingen Tentamen Natuurkunde-1

Uitwerkingen Tentamen Natuurkunde-1 Uitwerkingen Tentamen Natuurkunde-1 5 november 2015 Patrick Baesjou Vraag 1 [17]: a. Voor de veerconstante moeten we de hoekfrequentie ω weten. Die wordt gegeven door: ω = 2π f ( = 62.8 s 1 ) Vervolgens

Nadere informatie

Theory Dutch (Netherlands) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave.

Theory Dutch (Netherlands) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave. Q1-1 Twee problemen uit de Mechanica (10 punten) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave. Deel A. De verborgen schijf (3.5 punten) We beschouwen een

Nadere informatie

Theory DutchBE (Belgium) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave.

Theory DutchBE (Belgium) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave. Q1-1 Twee problemen uit de Mechanica (10 punten) Lees eerst de algemene instructies uit de aparte enveloppe voordat je begint met deze opgave. Deel A. De verborgen schijf (3.5 punten) We beschouwen een

Nadere informatie

2.1 Twee gekoppelde oscillatoren zonder aandrijving

2.1 Twee gekoppelde oscillatoren zonder aandrijving Hoofdstuk Twee gekoppelde oscillatoren.1 Twee gekoppelde oscillatoren zonder aandrijving We beschouwen als voorbeeld van een systeem van puntmassa s die gekoppeld zijn aan elkaar en aan twee vaste wanden

Nadere informatie

2de bach HIR. Optica. Smvt - Peremans. uickprinter Koningstraat Antwerpen EUR

2de bach HIR. Optica. Smvt - Peremans. uickprinter Koningstraat Antwerpen EUR 2de bach HIR Optica Smvt - Peremans Q uickprinter Koningstraat 13 2000 Antwerpen www.quickprinter.be 231 3.00 EUR Trillingen 1. Eenparige harmonische beweging Trilling =een ladingsdeeltje beweegt herhaaldelijk

Nadere informatie

Lineaire dv van orde 2 met constante coefficienten

Lineaire dv van orde 2 met constante coefficienten Lineaire dv van orde 2 met constante coefficienten Homogene vergelijkingen We bekijken eerst homogene vergelijkingen van orde twee met constante coefficienten, d.w.z. dv s van de vorm a 0 y + a 1 y + a

Nadere informatie

Mechanica: Formularium

Mechanica: Formularium echanica: omuaium θ < 5 sinθ θ Ineiding Kinematica: dim. Cte a:. v = v 0 + at. x = x 0 + v 0 t + at 3. v = v 0 + a(x x 0 ) 4. v = v+v0 3 Kinematica:,3 dim. Goniometische fomues:. sin α + cos α = cos α

Nadere informatie

6. Goniometrische functies.

6. Goniometrische functies. Uitwerkingen R-vragen hodstuk 6 6. Goniometrische functies. R1 Wat heeft een cirkelomwenteling te maken met een sinus cosinus? ls een punt met constante snelheid een cirkelbeweging uitvoert en je zet hoogte

Nadere informatie

Herhalingsopgaven 6e jaar

Herhalingsopgaven 6e jaar Herhalingsopgaven 6e jaar 1. Schijf A is door middel van een onuitrekbare rubber band verbonden met schijf B. Op schijf B is een grotere schijf C gemonteerd, zo dat ze draaien rond dezelfde as (zie figuur).

Nadere informatie

formules havo natuurkunde

formules havo natuurkunde Subdomein B1: lektriciteit De kandidaat kan toepassingen van het gebruik van elektriciteit beschrijven, de bijbehorende schakelingen en de onderdelen daarvan analyseren en de volgende formules toepassen:

Nadere informatie

Hoofdstuk 7: METING VAN DE FREQUENTIE- NAUWKEURIGHEID

Hoofdstuk 7: METING VAN DE FREQUENTIE- NAUWKEURIGHEID Hoofdstuk 7: METING VAN DE FREQUENTIE- NAUWKEURIGHEID 7.1. Inleiding In dit hoofdstuk zullen we enkele methoden bespreken voor het bepalen van de nauwkeurigheid van de door ons te distribueren frequentiestandaard.

Nadere informatie

15.1 Oppervlakten en afstanden bij grafieken [1]

15.1 Oppervlakten en afstanden bij grafieken [1] 15.1 Oppervlakten en afstanden bij grafieken [1] Bereken: Bereken algebraisch: Bereken exact: De opgave mag berekend worden met de hand of met de GR. Geef bij GR gebruik de ingevoerde formules en gebruikte

Nadere informatie

BIOFYSICA: Toets I.4. Dynamica: Oplossing

BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 ste jaar Bachelor BIOMEDISCHE WETENSCHAPPEN Academiejaar 006-007 BIOFYSICA: Toets I.4. Dynamica: Oplossing 1 Opgave 1 Een blokje met massa 0, kg heeft onder aan een vlakke helling een snelheid van 7,

Nadere informatie

jaar: 1989 nummer: 25

jaar: 1989 nummer: 25 jaar: 1989 nummer: 25 Op een hoogte h 1 = 3 m heeft een verticaal vallend voorwerp, met een massa m = 0,200 kg, een snelheid v = 12 m/s. Dit voorwerp botst op een horizontale vloer en bereikt daarna een

Nadere informatie

2 Kromming van een geparametriseerde kromme in het vlak

2 Kromming van een geparametriseerde kromme in het vlak Kromming Extra leerstof bij het vak Wiskunde voor Bouwkunde (DB00) 1 Inleiding De begrippen kromming en kromtestraal worden in het boek Calculus behandeld in hoofdstuk 11. Daar worden deze begrippen echter

Nadere informatie

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30

TENTAMEN DYNAMICA (140302) 29 januari 2010, 9:00-12:30 TENTAMEN DYNAMICA (14030) 9 januari 010, 9:00-1:30 Verzoek: begin de beantwoording van een nieuwe vraag op een nieuwe pagina. En schrijf duidelijk: alleen leesbaar en verzorgd werk kan worden nagekeken.

Nadere informatie

Trillingen. Welke gegevens heb je nodig om dit diagram exact te kunnen tekenen?

Trillingen. Welke gegevens heb je nodig om dit diagram exact te kunnen tekenen? Inhoud... 2 Fase... 3 Voorbeeld: Fase en uitwijking van een trillende massa... 3 Faseverschil... 5 Gereduceerde fase... 5 In fase en in tegenfase... 5 Opgave: Uitwijking, fase en gereduceerde fase... 5

Nadere informatie

BIOFYSICA: WERKZITTING 1 (Oplossingen) KINEMATICA

BIOFYSICA: WERKZITTING 1 (Oplossingen) KINEMATICA 1ste Kandidatuur ARTS of TANDARTS Academiejaar 00-003 Oefening 1 BIOFYSICA: WERKZITTING 1 (Oplossingen) KINEMATICA Kan de bewegingsrichting van een voorwerp, dat een rechte baan beschrijft, veranderen

Nadere informatie

Arbeid & Energie. Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be. Assistent: Erik Lambrechts

Arbeid & Energie. Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be. Assistent: Erik Lambrechts Introductieweek Faculteit Bewegings- en Revalidatiewetenschappen 25 29 Augustus 2014 Arbeid & Energie Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be Assistent: Erik Lambrechts

Nadere informatie

Examen VWO. wiskunde B1,2

Examen VWO. wiskunde B1,2 wiskunde B1,2 Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak 2 Woensdag 22 juni 13.30 16.30 uur 20 05 Voor dit examen zijn maximaal 88 punten te behalen; het examen bestaat uit 19 vragen.

Nadere informatie

Studievoorbereiding. Vak: Natuurkunde voorbeeldexamen. Toegestane hulpmiddelen: Rekenmachine. Het examen bestaat uit: 32 meerkeuzevragen

Studievoorbereiding. Vak: Natuurkunde voorbeeldexamen. Toegestane hulpmiddelen: Rekenmachine. Het examen bestaat uit: 32 meerkeuzevragen Studievoorbereiding VOORBLAD EXAMENOPGAVE Vak: Natuurkunde voorbeeldexamen Tijdsduur: Toegestane hulpmiddelen: Rekenmachine Het examen bestaat uit: 32 meerkeuzevragen Aantal pagina s: 10 Beoordeling van

Nadere informatie

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7.

Toegepaste wiskunde. voor het hoger beroepsonderwijs. Deel 2 Derde, herziene druk. Uitwerking herhalingsopgaven hoofdstuk 7. Drs. J.H. Blankespoor Drs.. de Joode Ir. A. Sluijter Toegepaste wiskunde voor het hoger beroepsonderwijs Deel Derde, herziene druk herhalingsopgaven hoofdstuk 7 augustus 009 HBuitgevers, Baarn Toegepaste

Nadere informatie

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen

Klassieke Mechanica a (Tentamen 11 mei 2012) Uitwerkingen Klassieke Mechanica a (Tentamen mei ) Uitwerkingen Opgave. (Beweging in een conservatief krachtenveld) a. Een kracht is conservatief als r F =. Dit blijkt na invullen: (r F) x = @F z =@y @F y =@z = =,

Nadere informatie

Krachten (4VWO) www.betales.nl

Krachten (4VWO) www.betales.nl www.betales.nl Grootheden Scalairen Vectoren - Grootte - Eenheid - Grootte - Eenheid - Richting Bv: m = 987 kg x = 10m (x = plaats) V = 3L Bv: F = 17N s = Δx (verplaatsing) v = 2km/h Krachten optellen

Nadere informatie

Tentamen Fysica in de Fysiologie (8N070) deel A2 en B, blad 1/6

Tentamen Fysica in de Fysiologie (8N070) deel A2 en B, blad 1/6 TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica Tentamen Fysica in de Fysiologie (8N7) deel A2 en B, blad 1/6 woensdag 9 november 211, 9.-12. uur

Nadere informatie

Practicum complexe stromen

Practicum complexe stromen Practicum complexe stromen Experiment 1a: Een blokspanning over een condensator en een spoel De opstelling is al voor je klaargezet. Controleer of de frequentie ongeveer op 500 Hz staat. De vorm van het

Nadere informatie

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS APRIL :00 12:45 uur TWEEDE RONDE NATUURKUNDE OLYMPIADE 2013 TOETS 1 24 APRIL 2013 11:00 12:45 uur MECHANICA 1 Blok en veer. (5 punten) Een blok van 3,0 kg glijdt over een wrijvingsloos tafelblad met een snelheid van 8,0 m/s

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a a 8 8. Ageleiden bladzijde 5 Uit de ormule voor de omtrek van een cirkel (omtrek r ) volgt dat een volledige cirkel (60 ) overeenkomt met radialen. Een halve cirkel (80 ) komt dus overeen met radialen.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Periodieke functies Voorkennis: Sinusfuncties ladzijde V-a De omtrek van de eenheidscirkel is π = π. Hierij hoort een hoek van zowel π radialen als 0. Dus 80 komt overeen met π radialen. V-a

Nadere informatie

Technische Universiteit Eindhoven Bachelor College

Technische Universiteit Eindhoven Bachelor College Technische Universiteit Eindhoven Bachelor College Herkansing Eindtoets Toegepaste Natuurwetenschappen and Second Chance final assessment Applied Natural Sciences (3NBB) Maandag 15 April, 2013, 14.00 17.00

Nadere informatie

De Mathematische Slinger in zijn relatie tot Elektrische Trillingskringen.

De Mathematische Slinger in zijn relatie tot Elektrische Trillingskringen. 1 De Matheatische Slinger in zijn relatie tot Elektrische Trillingskringen. F. De Bisschop, ON4BIF 1. INLEIDING De studie van de z.g. Matheatische Slinger kadert in de fysica opleiding als toepassing van

Nadere informatie

4. Maak een tekening:

4. Maak een tekening: . De versnelling van elk deel van de trein is hetzelfde, dus wordt de kracht op de koppeling tussen de 3e en 4e wagon bepaald door de fractie van de massa die er achter hangt, en wordt dus gegeven door

Nadere informatie

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen Assistent: Erik Lambrechts

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen Assistent: Erik Lambrechts Introductieweek Faculteit Bewegings- en Revalidatiewetenschappen 25 29 Augustus 2014 Topic: Fysica Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be Assistent: Erik Lambrechts

Nadere informatie

Advanced Creative Enigneering Skills

Advanced Creative Enigneering Skills Enigneering Skills Kinetica November 2015 Theaterschool OTT-2 1 Kinematica Kijkt naar de geometrische aspecten en niet naar de feitelijke krachten op het systeem Kinetica Beschouwt de krachten Bewegingsvergelijkingen

Nadere informatie

In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 10 cm en h3 = 15 cm.

In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 10 cm en h3 = 15 cm. Fysica Vraag 1 In een U-vormige buis bevinden zich drie verschillende, niet mengbare vloeistoffen met dichtheden ρ1, ρ2 en ρ3. De hoogte h1 = 1 cm en h3 = 15 cm. De dichtheid ρ3 wordt gegeven door:

Nadere informatie

2 GEDWONGEN TRILLINGEN

2 GEDWONGEN TRILLINGEN GEDWONGEN TRILLINGEN.0 INLEIDING Onder de titel gedwongen trillingen bekijken we de trillingen van een zwak gedempte harmonische oscillator die ontstaan als deze niet zelfstandig trilt, maar wor aangedreven

Nadere informatie

Trillingen en Golven. Samenvatting natuurkunde Hoofdstuk 3 & 4 Joris van Rijn

Trillingen en Golven. Samenvatting natuurkunde Hoofdstuk 3 & 4 Joris van Rijn Trillingen en Golven Samenvatting natuurkunde Hoofdstuk 3 & 4 Joris van Rijn NOTE: DE HOOFDSTUKKEN IN DEZE SAMENVATTING KOMEN OVEREEN MET DE PARAGRAFEN UIT HET BOEK. BIJ EEN AANTAL PARAGRAFEN VAN DEZE

Nadere informatie

Veerkracht. Leerplandoelen. Belangrijke formule: Wet van Hooke:

Veerkracht. Leerplandoelen. Belangrijke formule: Wet van Hooke: Veerkracht Leerplandoelen FYSICA TWEEDE GRAAD ASO WETENSCHAPPEN LEERPLAN SECUNDAIR ONDERWIJS VVKSO BRUSSEL D/2012/7841/009 5.1.3 Kracht B26 Een kracht meten door gebruik te maken van een dynamometer. B27

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 8 Voorkennis: Sinusfuncties ladzijde 9 V- Uit 8 radialen volgt 8 radialen Je krijgt dan de volgende tael: V-a V-a 8 graden 6 9 8 radialen O 6 6 7 8 9 Aflezen:,,,, c Aflezen:, d Aflezen:, e Aflezen: O Aflezen:,,,

Nadere informatie

Tentamen Golven en Optica

Tentamen Golven en Optica Tentamen Golven en Optica 5 juni 008, uitwerking 1 Lopende golven en interferentie op een snaar a In[1]:= y 0 1; y 1 x, t : y x, t : y 0 x 300 t 4 y 0 x 300 t 4 4 In[4]:= Ploty 1 x, 0, y x, 0, x, 10, 10,

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 2 Regels voor differentiëren

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreide antwoorden Hoofdstuk 2 Regels voor differentiëren De Wageningse Methode &6 WO wiskunde B Uitgebreide antwoorden Hoofdstuk egels voor differentiëren Paragraaf Opnieuw sinus en inus a. -, 0, ; -, ; -, ; -, b. (,sin) (-0, ; 0,9), met de G Op dezelfde hoogte:,

Nadere informatie

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Complete reader periode 1 leerjaar 2. J. Kuiper. Transfer Database

Noorderpoort Beroepsonderwijs Stadskanaal. Reader. Complete reader periode 1 leerjaar 2. J. Kuiper. Transfer Database Noorderpoort Beroepsonderwijs Stadskanaal Reader Complete reader periode 1 leerjaar J. Kuiper Transfer Database ThiemeMeulenhoff ontwikkelt leermiddelen voor Primair Onderwijs, Algemeen Voortgezet Onderwijs,

Nadere informatie

Profielwerkstuk Gekoppelde slingers havovwo.nl januari 2003

Profielwerkstuk Gekoppelde slingers havovwo.nl januari 2003 , www.havovwo.nl Door welke variabelen wordt hun beweging bepaald? Auteurs Simone Geerts & Anouk Loonen, Klas 6F Vakken natuurkunde & wiskunde Inleverdatum woensdag 15 januari 11.00 uur, www.havovwo.nl

Nadere informatie

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen.

ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. ATWOOD Blok A en blok B zijn verbonden door een koord dat over een katrol hangt. Er is geen wrijving in de katrol. Het stelsel gaat bewegen. Bereken de spankracht in het koord. ATWOOD Over een katrol hangt

Nadere informatie

Deel 4: Krachten. 4.1 De grootheid kracht. 4.1.1 Soorten krachten

Deel 4: Krachten. 4.1 De grootheid kracht. 4.1.1 Soorten krachten Deel 4: Krachten 4.1 De grootheid kracht 4.1.1 Soorten krachten We kennen krachten uit het dagelijks leven: vul in welke krachten werkzaam zijn: trekkracht, magneetkracht, spierkracht, veerkracht, waterkracht,

Nadere informatie

Lessen wiskunde uitgewerkt.

Lessen wiskunde uitgewerkt. Lessen Wiskunde uitgewerkt Lessen in fase 1. De Oriëntatie. Les 1. De eenheidscirkel. In deze les gaan we kijken hoe we de sinus en de cosinus van een hoek kunnen uitrekenen door gebruik te maken van de

Nadere informatie

Trillingen... 2 Harmonische trilling... 3 Opgave: Bol aan veer II... 5

Trillingen... 2 Harmonische trilling... 3 Opgave: Bol aan veer II... 5 Inhoud... 2 Harmonische trilling... 3 Opgave: Bol aan veer I... 5 Opgave: Bol aan veer II... 5 Resonantie... 6 Biosensoren... 7 Opgave: Biosensor... 8 Energiebehoud... 9 Energiebehoud in een massaveersysteem...

Nadere informatie

Juli blauw Fysica Vraag 1

Juli blauw Fysica Vraag 1 Fysica Vraag 1 Een rode en een zwarte sportwagen bevinden zich op een rechte weg. Om de posities van de wagens te beschrijven, wordt een x-as gebruikt die parallel aan de weg georiënteerd is. Op het ogenblik

Nadere informatie

An analytical algebraic approach to determining differences in oscillation data between observed, computed and simulated environments

An analytical algebraic approach to determining differences in oscillation data between observed, computed and simulated environments Practicum Trillen en Slingeren 5VWO Natuurkunde Totaal An analytical algebraic approach to determining differences in oscillation data between observed, computed and simulated environments (PO Trillingen

Nadere informatie

EXAMEN VOORBEREIDEND WETENSCHAPPELUK ONDERWIJS IN 1979 , I. Dit examen bestaat uit 4 opgaven. " '"of) r.. I r. ',' t, J I i I.

EXAMEN VOORBEREIDEND WETENSCHAPPELUK ONDERWIJS IN 1979 , I. Dit examen bestaat uit 4 opgaven.  'of) r.. I r. ',' t, J I i I. .o. EXAMEN VOORBEREDEND WETENSCHAPPELUK ONDERWJS N 1979 ' Vrijdag 8 juni, 9.00-12.00 uur NATUURKUNDE.,, Dit examen bestaat uit 4 opgaven ',", "t, ', ' " '"of) r.. r ',' t, J i.'" 'f 1 '.., o. 1 i Deze

Nadere informatie

Examen mechanica: oefeningen

Examen mechanica: oefeningen Examen mechanica: oefeningen 22 februari 2013 1 Behoudswetten 1. Een wielrenner met een massa van 80 kg (inclusief de fiets) kan een helling van 4.0 afbollen aan een constante snelheid van 6.0 km/u. Door

Nadere informatie

m C Trillingen FREQUENTIE De periode is 0,73 s. Bereken de frequentie.

m C Trillingen FREQUENTIE De periode is 0,73 s. Bereken de frequentie. Trillingen FREQUENTIE De periode is 0,73 s. Bereken de frequentie. PERIODIEKE BEWEGING Een schijf met één stip wordt snel rondgedraaid. Het toerental van de schijf is 0 Hz. Je belicht de schijf met een

Nadere informatie

= cos245 en y P = sin245.

= cos245 en y P = sin245. G&R havo B deel C. von Schwartzenberg / a b overstaande rechthoekszijde PQ PQ sinα = (in figuur 8.) sin = = PQ = sin 0, 9. schuine zijde OP aanliggende rechthoekszijde OQ OQ cosα = (in figuur 8.) cos =

Nadere informatie

NATUURKUNDE. Bepaal de frequentie van deze toon. (En laat heel duidelijk in je berekening zien hoe je dat gedaan hebt, uiteraard!)

NATUURKUNDE. Bepaal de frequentie van deze toon. (En laat heel duidelijk in je berekening zien hoe je dat gedaan hebt, uiteraard!) NATUURKUNDE KLAS 5 PROEFWERK HOOFDSTUK 15: TRILLINGEN OOFDSTUK 15: TRILLINGEN 22/01/2010 Deze toets bestaat uit 4 opgaven (29 punten). Gebruik eigen grafische rekenmachine en BINAS toegestaan. Denk er

Nadere informatie

KINEMATICA 1 KINEMATICA

KINEMATICA 1 KINEMATICA KINEMATICA 1 KINEMATICA 1 Inleidende begrippen 1.1 Rust en beweging van een punt 1.1.1 Toestand van beweging 1 Inleidende begrippen Een punt is in beweging ten opzichte van een referentiepunt wanneer

Nadere informatie

Juli geel Fysica Vraag 1

Juli geel Fysica Vraag 1 Fysica Vraag 1 Een rode en een zwarte sportwagen bevinden zich op een rechte weg. Om de posities van de wagens te beschrijven, wordt een x-as gebruikt die parallel aan de weg georiënteerd is. Op het ogenblik

Nadere informatie

Examen Algemene natuurkunde 1, oplossing

Examen Algemene natuurkunde 1, oplossing Examen Algemene natuurkunde 1, oplossing Vraag 1 (6 ptn) De deeltjes m 1 en m 2 bewegen zich op eenzelfde rechte zoals in de figuur. Ze zitten op ramkoers want v 1 > v 2. v w m n Figuur 1: Twee puntmassa

Nadere informatie

Inleiding tot de dynamica van atmosferen Krachten

Inleiding tot de dynamica van atmosferen Krachten Inleiding tot de dynamica van atmosferen Krachten P. Termonia vakgroep wiskundige natuurkunde en sterrenkunde, UGent Inleiding tot de dynamica van atmosferen p.1/35 Inhoud 1. conventies: notatie 2. luchtdeeltjes

Nadere informatie

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt. Deze examentoets en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 100 minuten ongeveer 22 vragen Et3 stof vwo6 volgens het PTA: Onderwerpen uit samengevat: Rechtlijnige beweging Kracht

Nadere informatie

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm

Notatie Voor een functie y = y(t) schrijven we. Definitie Een differentiaalvergelijking is een vergelijking van de vorm college 3: differentiaalvergelijkingen Notatie Voor een functie y = y(t) schrijven we y = y (t) of y (1) = y (1) (t) voor de afgeleide dy dt, en y = y (t) of y (2) = y (2) (t) voor de tweede afgeleide

Nadere informatie

Systeemtheorie. Hoofdstuk 3. 3.1 Signalen aan de ingang

Systeemtheorie. Hoofdstuk 3. 3.1 Signalen aan de ingang Hoofdstuk 3 Systeemtheorie Doelstellingen. Weten welke signalen men aan de ingang kan aanleggen om de reactie van een systeem te bestuderen 2. Weten wat een Bode en Nyquistdiagram voorstellen en deze diagramma

Nadere informatie

7. Tweedimensionale grafieken

7. Tweedimensionale grafieken 7. Tweedimensionale grafieken 7.1. Grafieken van functies Maxima beschikt over meerdere opdrachten om grafieken te laten tekenen. Grafieken kunnen met wxplotd in de wxmaxima-omgeving ingebed worden (inline).

Nadere informatie

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut.

d. Met de dy/dx knop vind je dat op tijdstip t =2π 6,28 het water daalt met snelheid van 0,55 m/uur. Dat is hetzelfde als 0,917 cm per minuut. Hoofdstuk A: Goniometrische functies. I-. a. De grafiek staat hiernaast. De periode is ongeveer,6 uur. b. De grafiek snijden met y = levert bijvoorbeeld x,00 en x,8. Het verschil is ongeveer,7 uur en dat

Nadere informatie

Juli blauw Vraag 1. Fysica

Juli blauw Vraag 1. Fysica Vraag 1 Beschouw volgende situatie in een kamer aan het aardoppervlak. Een homogene balk met massa 6, kg is symmetrisch opgehangen aan de touwen A en B. De touwen maken elk een hoek van 3 met de horizontale.

Nadere informatie

d. Bereken bij welke hoek α René stil op de helling blijft staan (hij heeft aanvankelijk geen snelheid). NB: René gebruikt zijn remmen niet.

d. Bereken bij welke hoek α René stil op de helling blijft staan (hij heeft aanvankelijk geen snelheid). NB: René gebruikt zijn remmen niet. Opgave 1 René zit op zijn fiets en heeft als hij het begin van een helling bereikt een snelheid van 2,0 m/s. De helling is 15 m lang en heeft een hoek van 10º. Onderaan de helling gekomen, heeft de fiets

Nadere informatie

Uitwerkingen opgaven hoofdstuk 4

Uitwerkingen opgaven hoofdstuk 4 Uitwerkingen opgaven hoofdstuk 4 4.1 De eerste wet van Newton Opgave 7 Opgave 8 a F zw = m g = 45 9,81 = 4,4 10 N b De zwaartekracht werkt verticaal. Er is geen verticale beweging. Er moet dus een tweede

Nadere informatie

Wiskunde 3 partim Analyse: oefeningen

Wiskunde 3 partim Analyse: oefeningen Wiskunde 3 partim Analyse: oefeningen Lijnintegralen 1. Bereken de lijnintegraal waarbij C xdx + ydy (x 2 + y 2 ) 5/2 C : P (t) = exp t sin t e x + exp t cos t e y, 0 t 2π. Antwoord: 1 (1 exp ( 6π)) 3

Nadere informatie

Hoofdstuk 8 Goniometrie. 8.1 De eenheidscirkel. Opgave 1: PQ 1 OQ 1. Opgave 2: Opgave 3: GETAL EN RUIMTE HAVO WB D2 H8 1-1 - AUGUSTINIANUM (LW)

Hoofdstuk 8 Goniometrie. 8.1 De eenheidscirkel. Opgave 1: PQ 1 OQ 1. Opgave 2: Opgave 3: GETAL EN RUIMTE HAVO WB D2 H8 1-1 - AUGUSTINIANUM (LW) Hoofdstuk 8 Goniometrie 8. De eenheidscirkel Opgave : PQ a. sin 6 PQ sin 6 0,9 OQ cos6 OQ cos 6 0, b. P0,;0,9) Opgave : a. POQ 80 6 PQ 0,9 OQ 0, P0,;0,9) b. cos 0, sin 0,9 x P cos 0, y P sin 0,9 c. POQ

Nadere informatie

UITWERKINGEN OEFENVRAAGSTUKKEN 5 HAVO. natuurkunde

UITWERKINGEN OEFENVRAAGSTUKKEN 5 HAVO. natuurkunde UITWERKINGEN OEFENVRAAGSTUKKEN voor schoolexamen (SE0) en examen 5 HAVO natuurkunde katern 1: Mechanica editie 01-013 UITWERKINGEN OEFENVRAAGSTUKKEN voor schoolexamen (SE0) en examen 5 HAVO natuurkunde

Nadere informatie

Als de lijn een sinusvorm heeft spreek je van een harmonische trilling of een zuivere toon.

Als de lijn een sinusvorm heeft spreek je van een harmonische trilling of een zuivere toon. muziek; trillingen en golven Geluidsbron: alles dat geluid maakt. Een geluidsbron maakt geluid door te trillen. Periodieke beweging: een heen en weer beweging van een geluidsbron. Een zo een heen en weer

Nadere informatie

Paragraaf 12.1 : Gonio vergelijkingen en herleidingen

Paragraaf 12.1 : Gonio vergelijkingen en herleidingen Hoofdstuk 12 Goniometrische Formules (V5 Wis B Pagina 1 van 8 Paragraaf 12.1 : Gonio vergelijkingen en herleidingen Les 1 Gonio vergelijkingen oplossen met herleidregels Definitie Er zijn een aantal omschrijfregels

Nadere informatie

WISB134 Modellen & Simulatie. Lecture 11 - Dynamica van lineaire differentiaalvergelijkingen in twee dimensies

WISB134 Modellen & Simulatie. Lecture 11 - Dynamica van lineaire differentiaalvergelijkingen in twee dimensies WISB134 Modellen & Simulatie Lecture 11 - Dynamica van lineaire differentiaalvergelijkingen in twee dimensies Overzicht van ModSim Meeste aandacht (t/m 1 apr.) Basisbegrippen dynamische modellen Definities

Nadere informatie

Trillingen en tonen. 5.1 Inleiding. 5.2 Trillingsgrootheden

Trillingen en tonen. 5.1 Inleiding. 5.2 Trillingsgrootheden 5 Trillingen en tonen 5.1 Inleiding A 1 a Hartslag (polsslag), enstruatiecyclus, adehaling b De snaren van een gitaar en de lucht in blaasinstruenten trillen. De toeschouwers aken heen en weer gaande bewegingen

Nadere informatie

Het thermisch stemmen van een gitaar

Het thermisch stemmen van een gitaar Het thermisch stemmen van een gitaar In dit experiment wordt bestudeerd hoe snaarinstrumenten beïnvloed kunnen worden door warmte. Door gebruik te maken van elektriciteit is het mogelijk om instrumenten

Nadere informatie

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt.

a. Bepaal hoeveel langer. b. Bepaal met figuur 1 de snelheid waarmee de parachutist neerkomt. Deze examentoets en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 100 minuten ongeveer 22 vragen Et3 stof vwo6 volgens het PTA: Onderwerpen uit samengevat: Rechtlijnige beweging Kracht

Nadere informatie

Toegepaste mechanica 1. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven

Toegepaste mechanica 1. Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Toegepaste mechanica 1 Daniël Slenders Faculteit Ingenieurswetenschappen Katholieke Universiteit Leuven Academiejaar 29-21 Inhoudsopgave Vectorrekenen 5 Oefening 1.......................................

Nadere informatie

IJkingstoets burgerlijk ingenieur september 2013: algemene feedback

IJkingstoets burgerlijk ingenieur september 2013: algemene feedback IJkingstoets burgerlijk ingenieur 6 september 203 - reeks - p. IJkingstoets burgerlijk ingenieur september 203: algemene feedback In totaal namen 245 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be. Assistent: Erik Lambrechts

Topic: Fysica. Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be. Assistent: Erik Lambrechts Introductieweek Faculteit Bewegings- en Revalidatiewetenschappen 25 29 Augustus 2014 Topic: Fysica Dr. Pieter Neyskens Monitoraat Wetenschappen pieter.neyskens@wet.kuleuven.be Assistent: Erik Lambrechts

Nadere informatie

www. Fysica 1997-1 Vraag 1 Een herdershond moet een kudde schapen, die over haar totale lengte steeds 50 meter lang blijft, naar een 800 meter verderop gelegen schuur brengen. Door steeds van de kop van

Nadere informatie

Fysica. Indien dezelfde kracht werkt op een voorwerp met massa m 1 + m 2, is de versnelling van dat voorwerp gelijk aan: 18,0 m/s 2.

Fysica. Indien dezelfde kracht werkt op een voorwerp met massa m 1 + m 2, is de versnelling van dat voorwerp gelijk aan: <A> 18,0 m/s 2. Vraag 1 Beschouw volgende situatie nabij het aardoppervlak. Een blok met massa m 1 is via een touw verbonden met een ander blok met massa m 2 (zie figuur). Het blok met massa m 1 schuift over een helling

Nadere informatie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie

begin van document Eindtermen vwo wiskunde B (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie begin van document Eindtermen vwo wiskunde (CE) gekoppeld aan delen en hoofdstukken uit Moderne wiskunde 9e editie Domein Subdomein in CE moet in SE Vaardigheden 1: Informatievaardigheden X X : Onderzoeksvaardigheden

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Biomedische Technologie, groep Cardiovasculaire Biomechanica Tentamen Fysica in de Fysiologie (8N070) vrijdag 9 januari 2009, 9.00-12.00 uur Het tentamen bestaat

Nadere informatie

Labo test Fysica I: samenvatting

Labo test Fysica I: samenvatting Labo test Fysica I: samenvatting Botsingen: Doel: Principe: controle van wet van impuls beweging en krachtwerking van en tussen de massa s bestuderen tijdens en na de botsing en een verband zoeken tussen

Nadere informatie

Op zeker moment blijkt dat het middelste blok met massa m eenparig versneld naar rechts beweegt met versnelling a.

Op zeker moment blijkt dat het middelste blok met massa m eenparig versneld naar rechts beweegt met versnelling a. TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Technische Natuurkunde Examen Mechanica voor N en Wsk (3AA40) vrijdag 8 januari 008 van 4.00-7.00 uur Dit tentamen bestaat uit de opgaven t/m 5. evenveel punten

Nadere informatie

Vrije ongedempte trilling

Vrije ongedempte trilling Periodieke verschijnselen hoofdstuk 8 Harmonische trillingen Fysica 6 (2u) Deze slides voor de lesbegeleiding worden ter beschikking gesteld, maar ze zijn te beperkt om als samenvatting van de cursus te

Nadere informatie

Harmonische trillingen

Harmonische trillingen Periodieke verschijnselen hoofdstuk 8 Harmonische trillingen Fysica 6 (2u) Deze slides voor de lesbegeleiding worden ter beschikking gesteld, maar ze zijn te beperkt om als samenvatting van de cursus te

Nadere informatie

Eindexamen natuurkunde 1 vwo 2004-I

Eindexamen natuurkunde 1 vwo 2004-I - + Eindexamen natuurkunde vwo 2004-I 4 Beoordelingsmodel Opgave Valentijnshart Maximumscore 4 uitkomst: b 2,9 mm Bij het fotograferen van een voorwerp in het oneindige geldt: b f Bij het fotograferen

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B, (nieuwe stijl) Examen VWO Voorbereidend Wetenschappelijk Onderwijs Tijdvak Vrijdag 4 mei 3.30 6.30 uur 0 0 Voor dit examen zijn maximaal 86 punten te behalen; het examen bestaat uit 8 vragen.

Nadere informatie

Invloeden van schok en trillingen op product en verpakkingen

Invloeden van schok en trillingen op product en verpakkingen Invloeden van schok en trillingen op product en verpakkingen Er zijn diverse invloeden die schade kunnen veroorzaken aan producten tijdens transport. Temperatuur, luchtvochtigheid, trillingen en schokken.

Nadere informatie

Tentamen Mechanica ( )

Tentamen Mechanica ( ) Tentamen Mechanica (20-12-2006) Achter iedere opgave is een indicatie van de tijdsbesteding in minuten gegeven. correspondeert ook met de te behalen punten, in totaal 150. Gebruik van rekenapparaat en

Nadere informatie

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl.

De hoogte tijd grafiek is ook gegeven. d. Bepaal met deze grafiek de grootste snelheid van de vuurpijl. et1-stof Havo4: havo4 A: hoofdstuk 1 t/m 4 Deze opgaven en uitwerkingen vind je op www.agtijmensen.nl Bij het et krijg je in 1 minuten ongeveer deelvragen. Oefen-examentoets et-1 havo 4 1/11 1. Een lancering.

Nadere informatie

Basisexperimenten Fysica. 6 de jaar S.O. deel 2 Trillingen en golven. M. De Cock, G. Janssens, J. Vanhaecht. Vliebergh-Senciecentrum

Basisexperimenten Fysica. 6 de jaar S.O. deel 2 Trillingen en golven. M. De Cock, G. Janssens, J. Vanhaecht. Vliebergh-Senciecentrum Vliebergh-Senciecentrum Basisexperimenten Fysica 6 de jaar S.O. deel 2 Trillingen en golven M. De Cock, G. Janssens, J. Vanhaecht woensdag 5 november 2008 INHOUD Harmonische trilling als projectie van

Nadere informatie

Eindexamen natuurkunde pilot havo 2010 - I

Eindexamen natuurkunde pilot havo 2010 - I Eindexamen natuurkunde pilot havo 00 - I Beoordelingsmodel Aan het juiste antwoord op een meerkeuzevraag worden twee punten toegekend. Opgave Eliica maximumscore uitkomst: De actieradius is 3, 0 km. de

Nadere informatie

Trillingen & Golven. Practicum 1 Resonantie. Door: Sam van Leuven 5756561 Jiri Oen 5814685 Februari 2008-02-24

Trillingen & Golven. Practicum 1 Resonantie. Door: Sam van Leuven 5756561 Jiri Oen 5814685 Februari 2008-02-24 Trillingen & Golven Practicum 1 Resonantie Door: Sam van Leuven 5756561 Jiri Oen 5814685 Februari 2008-02-24 In dit verslag wordt gesproken over resonantie van een gedwongen trilling binnen een LRC-kring

Nadere informatie