Heilige Geometrie. Gulden Snede-verhouding weergegeven in een tekening.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Heilige Geometrie. Gulden Snede-verhouding weergegeven in een tekening."

Transcriptie

1 Heilige Geometrie De Heilige geometrie is een soort van paraplu waaronder onder andere de Gulden Snede valt, die ik hier ga uitleggen. Het is een verhouding. Een verhouding die de blauwdruk vormt voor heel veel wat wij om ons heen zien van boom, plant, dieren, mensen, enzovoort. De Gulden Snede zorgt voor orde. Als die orde er niet was geweest was er een enorme chaos geweest op aarde. Wanneer je op verschillende plaatsen op aarde dezelfde plant, dier of wat voor levend wezen dan ook tegenkomt moet er aan de basis een blauwdruk of wetmatigheid zijn die dit regelt. Een van deze blauwdrukken noemen we de Gulden Snede. Gulden Snede-verhouding weergegeven in een tekening. Hierboven zie je een vierkant (ABCD) waarvan de zijden een lengte hebben van 1. Dus de omtrek van het vierkant is vier. Zet een schrap halfweg (AB) zo ook halfweg (DC) en trek de lijn (EF). Zet de passerpunt in (E) en maak een cirkel over (D en C), en eindig bij (G). verleng de lijn (AB tot G). Het klinkt misschien raar maar dit is alles wat er nodig is om de verhouding weer te geven die je overal tegen komt in de natuur. We weten dat de afstand (AB) 1 is en in dit geval is de afstand (BG) 0.618, dus de totale lengte (AG) is Wil je dit groter tekenen bijv. met een vierkant van 5 bij 5 cm, is de totale lengte (AG) 5 x cm. De Gulden Snede is dus een verhouding van 1 staat tot In deze verhouding is ook ons lichaam, en veel om ons heen opgebouwd, maar daar kom ik later op terug. Eerst even iets anders. Leonardo van Pisa, of beter bekend als Fibonacci, was een man die leefde van 1170 tot Hij is een Italiaanse wiskundige die langdurig in Noord Afrika gewoond en gestudeerd heeft. Hij bestudeerde o.a. het Arabische getallenstelsel en realiseerde zich dat hiermee efficiënter gerekend kon worden dan met de tot dan toe in Europa gangbare Romeinse cijfers. In 1202 publiceerde hij zijn werk Liber Abaci en introduceerde hiermee dit cijferstelsel in Europa zoals we dat nu nog steeds kennen.

2 Fibonacci begon konijnen te fokken. Hij begon met twee konijnen, maar al snel had hij er drie. Na het bestuderen van het vermenigvuldigen van deze dieren kwam hij tot de reeks 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144..enz. Deze getallenreeks heet de Fibonacci reeks, ook wel de konijnenreeks genoemd. Als je naar de getallenreeks kijkt, in de bovenstaande tekst, kun je daar een bepaalde structuur in zien. Twee voorgaande getallen vormen het volgende getal, = 144. Wanneer je bijv. 144 deelt door 89 is dit Dus de uitkomst is het Gulden Snede-getal. Hetzelfde getal als aan het begin bij de eerste tekening. Deze getallen geven ons de mogelijkheid om deze reeks te tekenen, om het op papier te zetten. Alles wat je nodig hebt is een passer, liniaal, potlood, gummetje en papier. Ik gebruik zelf altijd papier met centimetervakjes.

3 Aan de onderkant van dennenappels kun je de spiralen zien, maar let ook op het aantal want die vind je weer in de Fibonacci-reeks. Als je aandachtig kijkt zie je op deze bovenstaande bloem dezelfde spiralen als op de dennenappel, alleen meer. Daarnaast zijn de spiralen in de zonnebloem heel duidelijk te zien. Als je de spiralen zou tellen kom je uit op 34 lange en 55 korte. Deze bloemen spiralen vanuit het midden, de stengel, spiraalgewijs naar buiten. De zaden van een zonnebloem zijn ruitvormig maar de zijden hebben verscillende afmetingen. Er is in mijn ogen geen betere zaadverdeling mogelijk. Je ziet deze spiralen dan ook overal in allerlei planten terug. Het is niet zo dat de zaden op een rijtje groeien, maar in een driehoeksverhouding,hetzelde als de bladeren aan de onderstaande plant.

4 In het bovenaanzicht van deze plant kun je de spiraal ook goed terugzien. De korte spiraal loopt van 1 naar 6 naar 11 naar 16 elke keer 5 verschil. De lange spiraal gaat van 2, 5, 8, 11, 14 elke keer 3 verschil. Vijf en drie komen ook weer uit de Fibonacci reeks. Bij deze plant kun je heel mooi zien dat de bladeren zo min mogelijk boven elkaar zitten om maar zoveel mogelijk licht op te vangen. Wat te denken van deze schoonheid, de bloemkool heeft zijn spiralen maar ook elke punt die er op zit.

5 Dezelfde spiralen kun je ook zien op de stam van een apenboom. Let ook op de tak rechts van de stam. Nou even een paar hele andere voorbeelden.

6 Met het Parthenon voor je wil ik wat vertellen over de Gulden Snede en gebouwen. Gebouwen gebouwd in de Gulden Snede-verhouding gaan veel langer mee omdat er geen spanningen in zitten. Het is gebouwd in overeenstemming met de verhoudingen in de natuur en het universum zoals je dadelijk kunt zien. De steenhouwers wisten van de verschillende verhoudingen in de natuur en daar buiten. Ook is de locatie van die oude gebouwen bijna altijd een speciale energetische plek. Van sterrenstelsel tot DNA, allemaal in de Gulden Snede-verhouding.

7 Orkaan Sandy in oktober Ons lichaam is helemaal in de Guldensnede verhouding, zelfs onze vingerkootjes.

8 Niet alleen de vlinder op zich is in verhouding maar ook de tekening op de vlinder. Het volgende zult u misschien niet geloven maar de lengte en breedte van onze pinpas of creditkaart is ook al in de Gulden Snede-verhouding.

9 Dit fraaie schilderij van Botticelli, de geboorte van Venus, is een lust voor het oog niet alleen om dat het zo fraai geschilderd is maar ook omdat de lijnen, bijvoorbeeld de horizon, in de Gulden Snedeverhouding op het doek staan. Ik kan nog eindeloos doorgaan met voorbeelden te geven waarin de Gulden Snede verborgen zit maar dat doe ik niet want hier stopt mijn verhaal. Misschien zie ik u nog een keer terug ergens aan een tafel waarbij je deze geometrische figuren zelf gaat tekenen. Bennie Harmsen

Het irrationaal getal phi (φ)

Het irrationaal getal phi (φ) Het irrationaal getal phi (φ) De gulden snede Het irrationaal φ is ongeveer 1,6180339887 Dit getal is terug te vinden in veel maten en verhoudingen van lengtes van oude Griekse beeldhouwwerken, architectuur

Nadere informatie

Kopieer- en werkbladen: de reeks van Fibonacci

Kopieer- en werkbladen: de reeks van Fibonacci 1 1 3,14 4 Kopieer- en werkbladen: de reeks van Fibonacci Grote Rekendag 26 www.rekenweb.nl 71 1 1 3,14 4 72 www.rekenweb.nl Grote Rekendag 26 1 1 3,14 4 Het konijnenprobleem Een familie konijnen kan heel

Nadere informatie

DE GULDEN SNEDE IN WEB DESIGN

DE GULDEN SNEDE IN WEB DESIGN HET NUT VAN DE GULDEN SNEDE IN WEB DESIGN In dit hoorcollege ga ik het hebben over mijn onderzoek naar de gulden snede met betrekking tot web design. De gulden snede fascineert me al van jongs af aan en

Nadere informatie

2.5 Regelmatige veelhoeken

2.5 Regelmatige veelhoeken Regelmatige veelhoeken 81 2.5 Regelmatige veelhoeken Een regelmatige veelhoek is een figuur met zijden die allemaal even lang en hoekendieallemaalevengrootzijn. Wezijneraleenpaartegengekomen: de regelmatige

Nadere informatie

Mededelingenblad van de Stichting Ars et Mathesis. Redaktieadres Nieuwstraat 6 3743 BL Baarn. Jaargang 6 Nummer 3 September 1992

Mededelingenblad van de Stichting Ars et Mathesis. Redaktieadres Nieuwstraat 6 3743 BL Baarn. Jaargang 6 Nummer 3 September 1992 Mededelingenblad van de Stichting Ars et Mathesis Redaktieadres Nieuwstraat 6 3743 BL Baarn Jaargang 6 Nummer 3 September 1992 Op zaterdag 24 oktober wordt de tentoonstelling WISKUNSTIGE SCHOONHEID geopend

Nadere informatie

Leven volgens de natuurwetten zaterdag, 23 november 2013 00:00

Leven volgens de natuurwetten zaterdag, 23 november 2013 00:00 Een Eco Village op Curaçao. Dat is de droom van Salomon Bomberg. Zijn plan verkeert nog in een beginstadium, maar voor hem gaat het om de weg die leidt naar het realiseren van zijn doel. Met een groep

Nadere informatie

De Wonderlijke Zonnebloem

De Wonderlijke Zonnebloem De Wonderlijke Zonnebloem Brecht Verstappen Student SLO wiskunde KU Leuven Wiskunde en de natuur. Op het eerste zicht zijn dat twee aparte werelden, maar schijn bedriegt: de natuur zit vol met wiskundige

Nadere informatie

1 - Geschiedenis van de Algebra

1 - Geschiedenis van de Algebra 1 - Geschiedenis van de Algebra De opdracht omschrijving voor dit hoofdstuk bestond uit het volgende: A1 - Maak 5 van de 19 opdrachten. Zorg voor nette uitwerkingen. Kies de 5 verspreid over de 19. A2

Nadere informatie

Wiskunde in vierde, vijfde en zesde klas Lezing

Wiskunde in vierde, vijfde en zesde klas Lezing Wiskunde in vierde, vijfde en zesde klas Lezing 14-02-2006 BREUKEN Nog eenmaal pannenkoeken verdelen. De cirkel als meest gebruikte beeld bij de breuken Breukentafels: ½ - 2/4 3/6 4/8 enz. De breukenregels:

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Wortels Hoofdstuk - Wortels Voorkennis V- zijde vierkant in m oppervlakte vierkant in m 9 V- = = = = = 7 = 9 = 7 = 89 = 9 8 = = 9 8 = = 9 = 8 = 9 9 = = 0 = 00 = 0 = 00 V-a = 9 = b 7 = 9 = 9

Nadere informatie

Zoek nu even zelf hoe het verder gaat. Een schematische voorstelling kan hierbij zeker helpen.

Zoek nu even zelf hoe het verder gaat. Een schematische voorstelling kan hierbij zeker helpen. De rij van Fibonacci Leonardo di Pisa (/ ca. 1170, artiestennaam Fibonacci, invoerder van de Indische cijfers in Europa), zat in 1202 met het volgende zware wiskundige probleem: Stel: een boer koopt op

Nadere informatie

wizsmart 2015 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizsmart 2015 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 50 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

2.1 Cirkel en middelloodlijn [1]

2.1 Cirkel en middelloodlijn [1] 2.1 Cirkel en middelloodlijn [1] Hiernaast staat de cirkel met middelpunt M en straal 2½ cm In het kort: (M, 2½ cm) Op de zwarte cirkel liggen alle punten P met PM = 2½ cm In het rode binnengebied liggen

Nadere informatie

Tips bij composities

Tips bij composities Tips bij composities Een goede foto is natuurlijk meer dan alleen scherp stellen op je onderwerp. De fotografie kent verschillende 'regeltjes'. Ja, tussen aanhalingstekens. Dit omdat alle regeltjes in

Nadere informatie

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN OPTELLEN/AFTREKKEN Zet de getallen onder elkaar in je schrift eerst zelf proberen uit te rekenen bij aftrekken: denk om lenen bij optellen: denk om doorschuiven geen vergissingen? bij lang nadenken: rekenmachine

Nadere informatie

Rijen in het dagelijks leven Handleiding leerkracht

Rijen in het dagelijks leven Handleiding leerkracht Rijen in het dagelijks leven Handleiding leerkracht Aantal lestijden: ± 5 Graad: 2 e Jaar: 2 e Gelinkte vakken: Wiskunde, fysica, biologie, aardrijkskunde, ICT, geschiedenis, godsdienst, L.O. 1 Korte inhoud

Nadere informatie

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizprof 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe www.smart.be www.rekenzeker.nl www.sanderspuzzelboeken.nl www.schoolsupport.nl

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Object 1:

Object 1: Project Wiskunde & Schoonheid Wat is schoonheid? En waarom vinden we bepaalde dingen mooi? Wat is de Gulden Snede? En wat heeft die te maken met de Fibonacci-rij? Wat heeft wiskunde met schoonheid te maken?

Nadere informatie

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2015 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

Deel C. Breuken. vermenigvuldigen en delen

Deel C. Breuken. vermenigvuldigen en delen Deel C Breuken vermenigvuldigen en delen - 0 Sprongen op de getallenlijn. De sprongen op de getallenlijn zijn even groot. Schrijf passende breuken of helen bij de deelstreepjes. 0 Welk eindpunt wordt bereikt

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a 4 8 + 4 1,80 + 4 0,60 = 32 + 7,20 + 2,40 = 41,60. Ze is 41,60 kwijt. 4 (8 + 1,80 + 0,60) = 4 10,40 = 41,60. Ze krijgt hetzelfde edrag. c 8 + 1,80 + 0,60 4 = 8 + 1,80 + 2,40 = 12,20. Je

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 VBO en MAVO Klas 3 en 4 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

Ruitjes vertellen de waarheid

Ruitjes vertellen de waarheid Ruitjes vertellen de waarheid Opdracht 1 Van fouten kun je leren Van fouten kun je leren, jazeker. Vooral als je héél goed weet wat er fout ging. Vandaag leer je handige formules begrijpen door kijken

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

groep 8 blok 7 antwoorden Malmberg s-hertogenbosch

groep 8 blok 7 antwoorden Malmberg s-hertogenbosch blok 7 groep 8 antwoorden Malmberg s-hertogenbosch blok 7 les 3 3 Reken de omtrek en de oppervlakte van de figuren uit. Gebruik m en m 2. 1 m C Omtrek figuur C 20 m Oppervlakte figuur C 22 m 2 A B Omtrek

Nadere informatie

Rekentijger - Groep 7 Tips bij werkboekje A

Rekentijger - Groep 7 Tips bij werkboekje A Rekentijger - Groep 7 Tips bij werkboekje A Omtrek en oppervlakte (1) Werkblad 1 Van een rechthoek die mooi in het rooster past zijn lengte en breedte hele getallen. Lengte en breedte zijn samen gelijk

Nadere informatie

Bovenbouw de reeks van Fibonacci

Bovenbouw de reeks van Fibonacci 1 1 3,14 4 Bovenbouw de reeks van Fibonacci Grote Rekendag 26 www.rekenweb.nl 71 1 1 3,14 4 72 www.rekenweb.nl Grote Rekendag 26 1 1 3,14 4 Bovenbouw: de reeks van Fibonacci In iedere methode komen wel

Nadere informatie

1 Inleiding 2 Lengte en zijn eenheden 3 Omtrek 4 Oppervlakte 5 Inhoud. Meten is weten. Joke Braaksma. November 2010

1 Inleiding 2 Lengte en zijn eenheden 3 Omtrek 4 Oppervlakte 5 Inhoud. Meten is weten. Joke Braaksma. November 2010 November 2010 Wat kunnen we allemaal meten? Wat kunnen we allemaal meten? 1. Lengte / breedte / hoogte / omtrek / oppervlakte / inhoud en volume 2. Tijd 3. Gewicht 4. Geld 5. Temperatuur Wij gaan ons

Nadere informatie

Oefeningen in verband met tweedegraadsvergelijkingen

Oefeningen in verband met tweedegraadsvergelijkingen Oefeningen in verband met tweedegraadsvergelijkingen l. e omtrek van een rechthoek is 8 m en de diagonaal 10 m. Welke afmetingen heeft deze rechthoek?. Bereken x zodat de opp van de rechthoek even groot

Nadere informatie

Kangoeroe. Wallabie de wereldwijde reken-, denk- en puzzelwedstrijd. Aan alle Wallabies en hun

Kangoeroe. Wallabie de wereldwijde reken-, denk- en puzzelwedstrijd. Aan alle Wallabies en hun Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Aan alle Wallabies en hun leerkrachten: veel succes en, nog belangrijker, veel plezier! Vlaamse Wiskunde Olympiade vzw Juist antwoord Geen antwoord

Nadere informatie

Caspar Bontenbal april 2015 WISKUNDE & KUNST. Eindverslag

Caspar Bontenbal april 2015 WISKUNDE & KUNST. Eindverslag Caspar Bontenbal 0903785 24 april 2015 WISKUNDE & KUNST Eindverslag Table of Contents Les 1 - Introductie wiskunde & kunst... 2 Opdracht 1.1... 2 Opdracht 1.2... 2 Les 2 - Wiskunde met Verve bloemlezing

Nadere informatie

Overig nieuws Hulp ouders bij rekenen deel 3.

Overig nieuws Hulp ouders bij rekenen deel 3. Overig nieuws Hulp ouders bij rekenen deel 3. Het rekenonderwijs van tegenwoordig ziet er anders uit dan vroeger. Dat komt omdat er nieuwe inzichten zijn over hoe kinderen het beste leren. Vroeger lag

Nadere informatie

1 De Gulden snede wordt ook wel divina proportione (goddelijke verhouding) of sectione aurea (gouden verdeling) genoemd. Het is eigenlijk één

1 De Gulden snede wordt ook wel divina proportione (goddelijke verhouding) of sectione aurea (gouden verdeling) genoemd. Het is eigenlijk één De Gulden snede Inhoudsopgave 1. De Gulden snede 2. Hoe verkrijg ik de Gulden snede? 3. Pythagoras en het pentagram 4. De vijf regelmatige veelvlakken 5. Fibonacci 6. Leonardo da Vinci en de Gulden snede

Nadere informatie

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde Junior Wiskunde Olympiade 200-2002: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

LES: Wie van de drie?

LES: Wie van de drie? LES: Wie van de drie? DOEL getallen herkennen uit de tafels van 2 en 5; bewust worden dat de getallen uit de tafel van 2 allemaal even zijn; bewust worden dat de getallen uit de tafel van 5 allemaal eindigen

Nadere informatie

Een boekje met wiskundige vragen en opdrachten voor Havo 3

Een boekje met wiskundige vragen en opdrachten voor Havo 3 Een boekje met wiskundige vragen en opdrachten voor Havo 3 Gemaakt door: Harm Bakker Peter Vaandrager April 2002. Met dank aan mevr.o. De Meulemeester van KSO Glorieux uit Ronse in België. Geschiedenis

Nadere informatie

Tweepuntsperspectief I

Tweepuntsperspectief I 1 G Tweepuntsperspectief I 1. We verlaten even het perspectief en bekijken een vierkant ABCD op ware grootte. M is het middelpunt van het vierkant. PQ is een horizontale lijn door M. Zeg dat P en Q de

Nadere informatie

LEERWERKBOEK. 2F Meten en meetkunde. Les Schaal

LEERWERKBOEK. 2F Meten en meetkunde. Les Schaal LEERWERKBOEK 2F Meten en meetkunde Les Schaal 1 REKENBLOKKEN LES 1 SCHAAL EVEN OEFENEN LENGTEWEETJES 10 10 10 10 10 10 km hm dam m dm cm mm : 10 : 10 : 10 : 10 : 10 : 10 1 Reken om naar de andere maat.

Nadere informatie

Vul de tabel in. Hoeveel kaarten zijn er? Hoeveel kaarten hebben de kinderen gemaakt? Reken zo het aantal kruisjes uit.

Vul de tabel in. Hoeveel kaarten zijn er? Hoeveel kaarten hebben de kinderen gemaakt? Reken zo het aantal kruisjes uit. Dictee De 26 kinderen uit groep 6b van de Gebroeders Grimmschool oefenen de juiste schrijfwijze van lastige woorden. Dat doen ze met behulp van een dicteekaartenbak. In deze bak zitten in totaal 42 kaarten.

Nadere informatie

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2

5.1 Herleiden [1] Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) 2 = a 2 b 2 Herhaling haakjes wegwerken: a(b + c) = ab + ac (a + b)(c + d) = ac + ad + bc + bd (ab) = a b 5.1 Herleiden [1] Voorbeeld 1: (a + 5)(a 6) (a + 5)(-a + 7) = a 6a + 5a 30 ( a + 14a 5a + 35) = a 6a + 5a 30

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

12 Vlaamse Wiskunde Olympiade : Eerste ronde.

12 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1999-000: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

LES: Wie van de drie? 2

LES: Wie van de drie? 2 LES: Wie van de drie? 2 DOEL getallen herkennen uit de tafels van 2 t/m 9; oefenen van de tafels; bewust worden van de patronen in bepaalde tafels (bijv. tafels van even getallen hebben allemaal even uitkomsten,

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is.

1 Wiskunde, zeker. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. duimstok Timmerman Hoe lang iets is. 1 2 1 Wiskunde, zeker duimstok Timmerman Hoe lang iets is. Blokhaak: Timmerman Of een hoek haaks is. 1, 2, 3, 5, 6, 7. 8, 10, 11, 12 en 13 eurocent. Zeven munten: een van 1-eurocent, twee van 2-eurocent,

Nadere informatie

= Om van de zoo naar school te gaan, moet Kleine Kangoe twee keuzes maken. Noem deze keuzes A en B.

= Om van de zoo naar school te gaan, moet Kleine Kangoe twee keuzes maken. Noem deze keuzes A en B. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Koala: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 2.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-a Hester houdt e 5,00 3 e,85 3 e 3,9 5 e 5,00 e 3,70 e 6,58 5 e,7 over. b e 5,00 3 (e,85 e 3,9) 5 e 5,00 3 e 5, 5 e 5,00 e 0,8 5 e,7 V-a 6 3 5 36 9 5 7 b 9 (5 ) 5 9 (5 ) 5 9 5 c 0 3 6 5 000

Nadere informatie

OVERZICHT FORMULES: Eindexamen wiskunde vmbo gl/tl 2005 - II. omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

OVERZICHT FORMULES: Eindexamen wiskunde vmbo gl/tl 2005 - II. omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

wizbrain 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain 2013 21 maart 2013 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl 21 maart 2013 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be

Nadere informatie

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1 Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven

Nadere informatie

Oppervlakte. Esther van Meurs. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/97739

Oppervlakte. Esther van Meurs. CC Naamsvermelding 3.0 Nederland licentie. https://maken.wikiwijs.nl/97739 Auteur Laatst gewijzigd Licentie Webadres Esther van Meurs 07 maart 2017 CC Naamsvermelding 3.0 Nederland licentie https://maken.wikiwijs.nl/97739 Dit lesmateriaal is gemaakt met Wikiwijs van Kennisnet.

Nadere informatie

wiskunde C pilot vwo 2017-I

wiskunde C pilot vwo 2017-I De formule van Riegel en kilometertijden De marathonloper Pete Riegel ontwikkelde een eenvoudige formule om te voorspellen welke tijd een hardloper nodig zou hebben om een bepaalde afstand af te leggen,

Nadere informatie

Het Land van Oct. Marte Koning Frans Ballering. Vierkant voor Wiskunde Wiskundeclubs

Het Land van Oct. Marte Koning Frans Ballering. Vierkant voor Wiskunde Wiskundeclubs Het Land van Oct Marte Koning Frans Ballering Vierkant voor Wiskunde Wiskundeclubs Hoofdstuk 1 Inleiding Hoi, ik ben de Vertellende Teller, en die naam heb ik gekregen na mijn meest bekende reis, de reis

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 Inhoud Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 1/10 Eenheden Iedere grootheid heeft zijn eigen eenheid. Vaak zijn er meerdere eenheden

Nadere informatie

De teelt van zonnebloemen

De teelt van zonnebloemen De teelt van zonnebloemen De zonnebloem heeft als wetenschappelijke naam: Helianthus annuus. Deze naam komt van de Griekse woorden voor zon (helios) en bloem (anthos). De plant behoort tot de grote familie

Nadere informatie

wizsmart 2016 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan

wizsmart 2016 Veel succes en vooral veel plezier.!! je hebt 50 minuten de tijd rekenmachine is niet toegestaan www.zwijsen.nl www.e-nemo.nl www.education.ti.com wizsmart 206 Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 50 minuten de tijd www.smart.be

Nadere informatie

Waarom probleemoplossend denken? Heuristiek. Hoe realiseren in de klas? Nieuw leerplan VVKSO. Meer dimensionale kijk

Waarom probleemoplossend denken? Heuristiek. Hoe realiseren in de klas? Nieuw leerplan VVKSO. Meer dimensionale kijk Waarom probleemoplossend denken? Nieuw leerplan VVKSO Aandacht voor mathematisering Reflectie - controlerend terugkijken Differentiatie bij vraagstukken Meer dimensionale kijk Heuristiek Maak een schema

Nadere informatie

DINOSAURIËRS. Marthe Terny

DINOSAURIËRS. Marthe Terny DINOSAURIËRS Marthe Terny 1. INLEIDING Ik hou mijn spreekbeurt over dinosauriërs, omdat ik dit een erg leuk en interessant onderwerp vind. We weten al veel over de dinosauriërs, maar nog niet alles. Ik

Nadere informatie

MNEMOTECHNISCHE MIDDELTJES WISKUNDE. 2de 3de graad

MNEMOTECHNISCHE MIDDELTJES WISKUNDE. 2de 3de graad MNEMOTECHNISCHE MIDDELTJES WISKUNDE 2de 3de graad n.a.v. Personeelsvergadering 25/11/2014 Hoofdrekenen DELEN VAN NATUURLIJKE GETALLEN. Voorbeeld: 7800 : 6 = 1000 300 7800 : 6 = (6000 : 6) + (1800 : 6)

Nadere informatie

Bomenspeurtocht in het Wilhelminaplantsoen. Van:

Bomenspeurtocht in het Wilhelminaplantsoen. Van: Bomenspeurtocht in het Wilhelminaplantsoen Van: - 2 - Bomenspeurtocht in het Wilhelminaplantsoen. Datum: Vergeet niet de letters in te vullen Het gezegde: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

Nadere informatie

INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel.

INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel. Hoofdstuk 5 Het Assenstelsel 5.1 Het Assenstelsel INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel. Dit assenstelsel is een idee van de Franse filosoof en wiskundige René Descartes(1596-1650).

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 008-009: tweede ronde ( 7) = (A) 7 (B) 7 (C) 7 of + 7 (D) 7 (E) onbepaald Beschouw de rij opeenvolgende natuurlijke getallen beginnend met en eindigend met Wat is het middelste

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Examen VMBO-GL en TL 2005

Examen VMBO-GL en TL 2005 Examen VMBO-GL en TL 2005 tijdvak 2 dinsdag 21 juni 13.30 15.30 WISKUNDE CSE GL EN TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 24 vragen. Voor dit examen zijn maximaal 89 punten

Nadere informatie

gelijkvormigheid handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek

gelijkvormigheid handleiding inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek gelijkvormigheid inhoudsopgave 1 de grote lijn 2 applets 3 bespreking per paragraaf 4 tijdsplan 5 materialen voor een klassengesprek gelijkvormigheid gelijkvormigheid 1 de grote lijn hoofdlijn de zijlijn

Nadere informatie

Wiskunde Leerjaar 2 - Periode 1 Meetkunde

Wiskunde Leerjaar 2 - Periode 1 Meetkunde Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier

Nadere informatie

8.1 Inhoud prisma en cilinder [1]

8.1 Inhoud prisma en cilinder [1] 8.1 Inhoud prisma en cilinder [1] Een prisma heeft twee evenwijdige grensvlakken. Een grondvlak en een bovenvlak. De andere grensvlakken zijn rechthoeken. De hoogte van de prisma is de lengte van de opstaande

Nadere informatie

Genoeg ruimte? In de methodes

Genoeg ruimte? In de methodes Genoeg ruimte? Het berekenen van de oppervlakte van rechthoekige figuren komt in alle methoden voor. Vaak staat in de tekening aangegeven wat de te gebruiken eenheid is, bijvoorbeeld een vierkante meter.

Nadere informatie

Naam: Klas:.. Oppervlakte 1/11

Naam: Klas:.. Oppervlakte 1/11 Naam: Klas:.. Oppervlakte 1/11 Wat is oppervlakte? Als je op een groene school zit heb je vaak te maken met oppervlakte. Bij het aanleggen van een tuin of een terras, bij het bemesten van grond, bij het

Nadere informatie

KIJKWIJZER SCHILDERIJ CKV 1 opdracht Cijfer:

KIJKWIJZER SCHILDERIJ CKV 1 opdracht Cijfer: KIJKWIJZER SCHILDERIJ CKV 1 opdracht Cijfer: Naam: Klas: Datum: Feiten Een kijkwijzer is bedoeld om je mee te nemen in de waarneming en het kijken te intensiveren: kortom je gaat steeds meer dingen zien,

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

Extra oefenmateriaal H10 Kegelsneden

Extra oefenmateriaal H10 Kegelsneden Deel 1 Extra oefenmateriaal H10 Kegelsneden 1. Bereken de inhoud van de volgende twee afgeknotte figuren. 2. Hiernaast zie je een afgeknot zeszijdig prisma. Het grondvlak is een regelmatige zeshoek met

Nadere informatie

Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd

Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Kangoeroe de wereldwijde reken-, denk- en puzzelwedstrijd Aan alle Wallaroes en hun leerkrachten: veel succes en, nog belangrijker, veel plezier! reken denk puzzel Kangoeroe.org Vlaamse Wiskunde Olympiade

Nadere informatie

Begrippen tekenen periode 4 VORM COMPOSITIE RUIMTE. Vorm. Silhouetten

Begrippen tekenen periode 4 VORM COMPOSITIE RUIMTE. Vorm. Silhouetten Begrippen tekenen periode 4 VORM COMPOSITIE RUIMTE Vorm Silhouetten Mensen, dieren, voorwerpen en planten hebben allemaal hun eigen vorm. Daar zijn ze aan te herkennen. Je ziet geen kleuren, lijnen, diepte

Nadere informatie

Oplossing zoeken kwadratisch verband vmbo-kgt34

Oplossing zoeken kwadratisch verband vmbo-kgt34 Auteur VO-content Laatst gewijzigd Licentie Webadres 23 May 2016 CC Naamsvermelding 3.0 Nederland licentie http://maken.wikiwijs.nl/74207 Dit lesmateriaal is gemaakt met Wikiwijs Maken van Kennisnet. Wikiwijs

Nadere informatie

Schaduwopgaven Verhoudingen

Schaduwopgaven Verhoudingen Schaduwopgaven Verhoudingen bij 5 Een vierkant wordt verknipt in zeven driehoeken, zoals hiernaast. Het grijze driehoekje gooien we weg. Wat is de verhouding van de oppervlakte van de andere zes? na 10

Nadere informatie

handleiding plustaak rekenen

handleiding plustaak rekenen handleiding plustaak 6 rekenen Opzet van de taken Deze handleiding bevat per taak aanwijzingen voor de leerkracht voor de begeleiding van de kinderen. De begeleiding kan bestaan uit een korte bespreking

Nadere informatie

7 a patroonnummer a patroonnummer a h = z

7 a patroonnummer a patroonnummer a h = z Hoofdstuk 3 FORMULES 3.1 PATRONEN EN FORMULES 3 a 10 22 c? d De beweringen a b = b a en a + b = b + a zijn juist. e 15 a 12 a 18 a f a + 8 10 + a a + 14 b zijde vierkant 3 4 5 6 7 aantal gekleurde hokjes

Nadere informatie

Aan de gang. Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u

Aan de gang. Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u Aan de gang Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u Verkenning 1 (Piano) Je moet een zware piano verschuiven door een 1 meter brede gang met een rechte hoek er in. In de figuur hierboven

Nadere informatie

Bomenspeurtocht in het Wilhelminaplantsoen. Van:

Bomenspeurtocht in het Wilhelminaplantsoen. Van: Bomenspeurtocht in het Wilhelminaplantsoen Van: Bomenspeurtocht in het Wilhelminaplantsoen. Datum: Vergeet niet de letters in te vullen Het gezegde: 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16.

Nadere informatie

Workshop Verpakkingen NWD 18 februari 2012 hm/rvo. Bijlage berekeningen inpakpapier kubus. 1. Geef de helling van lijn OD.

Workshop Verpakkingen NWD 18 februari 2012 hm/rvo. Bijlage berekeningen inpakpapier kubus. 1. Geef de helling van lijn OD. Workshop Verpakkingen NWD 18 februari 2012 hm/rvo Bijlage berekeningen inpakpapier kubus 1. Geef de helling van lijn OD. O E D O 2. Geef de helling van lijn OE. 3. Staan de lijnen OD en OE loodrecht op

Nadere informatie

SMART-finale 2017 Ronde 1: 5-keuzevragen

SMART-finale 2017 Ronde 1: 5-keuzevragen SMART-finale 2017 Ronde 1: 5-keuzevragen Ronde 1 bestaat uit 16 5-keuzevragen. Bij elke vraag is precies één van de vijf antwoorden juist. Geef op het antwoordformulier duidelijk jouw keuze aan, door per

Nadere informatie

Leerstofoverzicht groep 3

Leerstofoverzicht groep 3 Leerstofoverzicht groep 3 Getallen en relaties Basisbewerkingen Verhoudingen Leerlijn Groep 3 uitspraak, schrijfwijze, kenmerken begrippen evenveel, minder/meer cijfer 1 t/m 10, groepjes aanvullen tot

Nadere informatie

Een heleboel voorwerpen Groep / niveau Groep 4/ 5 Leerstofaspecten Gebruik van meetinstrumenten, meten met standaardmaten Benodigdheden

Een heleboel voorwerpen Groep / niveau Groep 4/ 5 Leerstofaspecten Gebruik van meetinstrumenten, meten met standaardmaten Benodigdheden Titel Een heleboel voorwerpen Groep / niveau Groep 4/ 5 Leerstofaspecten Gebruik van meetinstrumenten, meten met standaardmaten Benodigdheden verschillende meetinstrumenten zoals een liniaal, bordliniaal,

Nadere informatie

Kangoeroewedstrijd editie Wallabie: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw

Kangoeroewedstrijd editie Wallabie: jaargang 2012, probleem 1. c Vlaamse Wiskunde Olympiade vzw . Bij een weerspiegeling in het water staat een beeld op zijn kop. ntwoord is dus zeker fout. De stand van de maan ten opzichte van de boom moet dezelfde blijven. Zo moet de holle kant van de maan het

Nadere informatie

Geschiedenis van getallen

Geschiedenis van getallen Geschiedenis van getallen Bart Zevenhek 30 december 2007 1 Inleiding Dit hoofdstuk bevat materiaal voor een serie van ongeveer tien lessen over de geschiedenis van getallen. Enerzijds wordt de leerling

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 HAVO en VWO Klas 3, 4 en 5 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE 2015 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Gegeven zijn drie verschillende gehele getallen a, b en c, die elk groter dan 0 en kleiner dan

Nadere informatie

Foutenberekeningen. Inhoudsopgave

Foutenberekeningen. Inhoudsopgave Inhoudsopgave Leerdoelen :... 3 1. Inleiding.... 4 2. De absolute fout... 5 3. De KOW-methode... 7 4. Grootheden optellen of aftrekken.... 8 5. De relatieve fout...10 6. grootheden vermenigvuldigen en

Nadere informatie

Simon de schildpad. 2012 J van Weert 1

Simon de schildpad. 2012 J van Weert 1 Programmeren met Simon Simon de schildpad 2012 J van Weert 1 Inleiding: Wat is programmeren eigenlijk? Een computer doet niets zonder een programma. Die programma s worden geschreven door mensen: programmeurs.

Nadere informatie

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Ter inleiding: tellen Turven, maar: onhandig bij grote aantallen. Romeinse cijfers: speciale symbolen voor

Nadere informatie

3 + 3 + 6 = 3 + 3 + 3 + 3.

3 + 3 + 6 = 3 + 3 + 3 + 3. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Wallabie: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

METHODISCH SCHETSEN. Taken multimedia. TAAK 1 Rechten tekenen met de vrije hand.

METHODISCH SCHETSEN. Taken multimedia. TAAK 1 Rechten tekenen met de vrije hand. TAAK 1 Rechten tekenen met de vrije hand. Maak een mooie asymmetrische compositie met rechthoeken en vierkanten en vul deze met vertikale lijnen. (Zorg dat je grote en kleine vlakken combineert. ze mogen

Nadere informatie

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen!

Wat is de som van de getallen binnen een cirkel? Geef alle mogelijke sommen! Estafette-opgave 1 (20 punten, rest 480 punten) Zeven gebieden Drie cirkels omheinen zeven gebieden. We verdelen de getallen 1 tot en met 7 over de zeven gebieden, in elk gebied één getal. De getallen

Nadere informatie

Vertaling van een gedeelte uit het Korte Boek over het Rekenen met Restauratie en Confrontatie (al-kitāb al-mukhtaṣar fī l-jabr wa l-muqābala)

Vertaling van een gedeelte uit het Korte Boek over het Rekenen met Restauratie en Confrontatie (al-kitāb al-mukhtaṣar fī l-jabr wa l-muqābala) Vertaling van een gedeelte uit het Korte Boek over het Rekenen met Restauratie en Confrontatie (al-kitāb al-mukhtaṣar fī l-jabr wa l-muqābala) van Muḥammad ibn Mūsā al-khwārizmī (ca. 830). De onderstaande

Nadere informatie