Machten van natuurlijke getallen G wedstrijden. 4 2 (ieder lid speelt tegen vier tegenstanders = 4 4).

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Machten van natuurlijke getallen G24. 16 wedstrijden. 4 2 (ieder lid speelt tegen vier tegenstanders = 4 4)."

Transcriptie

1 G24 Machten van natuurlijke getallen 303 E Schrijf als een macht. a = d = b = e = c = f = B Schrijf als een macht. De letters stellen willekeurige natuurlijke getallen voor. a p p =. p d = factoren b x x x y y y =. x y 3. e = c = factoren 305 B Reken uit a 4 4 = b 0 5 = c 2 5 = d = e 7 2 = f 4 3 = g 7 = h 2 3 = i 5 2 = j 3 4 = k 2 2 = l 6 3 = m 7 0 = n 8 2 = o 2 5 = p 6 2 = q = r 7 0 = B Vul in >, < of =. < = < = < a c e b = d > f > g h B Bereken met je rekenmachine a 5 4 = b 3 6 = c 2 0 = e 4 = d 0 2 = f 3 = g 4 3 = h 99 2 = B Bacteriën planten zich voort door celdeling. Bepaalde bacteriesoorten kunnen zich onder gunstige omstandigheden elke 20 minuten delen. Vul de tabel aan. Tijd in minuten Aantal bacteriën Aantal bacteriën (geschreven als macht van 2) V* Twee schaakclubjes bestaan uit elk vier personen. Elk lid uit de ene groep moet met elk lid uit de andere groep schaken. 6 wedstrijden a Hoeveel wedstrijden moeten er georganiseerd worden? 4 2 (ieder lid speelt tegen vier tegenstanders = 4 4). b Welke bewerking heb je net uitgevoerd? 5 2 (ieder lid speelt tegen vijf tegenstanders = 5 5). c Bereken hoeveel wedstrijden er nodig zijn als elke groep vijf personen heeft....

2 30 V* Op elke dobbelsteen staan zes cijfers. a Hoeveel verschillende worpen zijn er mogelijk met één dobbelsteen? b Hoeveel zijn er mogelijk met twee dobbelstenen? c Welke bewerking gebruik je hier? d Hoeveel mogelijkheden zijn er met vijf dobbelstenen? V* Elke knipt een blad papier in vier gelijke delen. Vervolgens knipt ze ieder deel opnieuw in vier gelijke delen. En zo gaat ze verder a Hoeveel kleine blaadjes heeft ze na twee keer knippen?.... b Welke bewerking gebruik je hier?.... c Hoeveel stukjes papier heeft Elke na zeven keer knippen?.... d Hoe hoog is de stapel (uitgedrukt in meter) als Elke al die stukjes.... op elkaar legt? De dikte van een blaadje papier is 0,05 mm. 32 V* Jan vertelt een gerucht aan twee vrienden. Een minuut later vertellen die twee elk het gerucht verder aan twee vrienden. Die vrienden vertellen elk het gerucht weer een minuut later verder aan twee vrienden. Na hoeveel minuten zijn meer dan 500 mensen op de hoogte? Tijd in minuten aantal mensen dat het gerucht heeft gehoord Antwoord: = = = Na 7 minuten zijn er meer dan 500 mensen op de hoogte = ,05 = 89,2 mm (bijna 82 cm hoog) V* Van vier L-bouwstenen van cm breed, kun je een grote L maken van 2 cm breed. Van vier grote L-vormen kun je een nog grotere L-vorm maken. Vul de tabel aan. breedte bouwsteen cm 2 cm 4 cm 8 cm 6 cm aantal bouwstenen V* Een enquêteformulier bestaat uit vijf vragen. Elk van de vragen kun je met ja en nee beantwoorden. 32 verschillende manieren a Op hoeveel manieren kun je de vragenlijst beantwoorden? b Welke bewerking gebruik je hier? = 8 c Reken uit hoeveel mogelijkheden er zijn als het enquête formulier vier vragen heeft en je kunt ze beantwoorden met altijd, soms of nooit

3 35 V** In een vijver drijft een waterlelie. Een dag later drijven er twee lelies. Nog een dag later vier. Zo verdubbelt elke bloem zich elke dag. a Vul de tabel aan. Dag Aantal waterlelies b Na vier dagen is één vierkante meter gevuld. Hoeveel lelies vind je op één vierkante meter? Je vindt lelies c Schrijf dit als een macht van d Na 6 dagen is de vijver volledig gevuld. Hoeveel lelies liggen er dan op de vijver? = na 5 dagen e Na hoeveel dagen was de vijver half gevuld? : 6 = 4096 De vijver is 4096 m 2 groot. f Wat is de oppervlakte van de vijver? V** Er bestaat een bekende legende over het ontstaan van het schaakbord. Het spel zou naar verluidt zo n 500 jaar geleden uitgevonden zijn door de wijze Sessa, aan het hof van Koning Sheram, in India. Koning Sheram was zo in de wolken over het schaakspel dat hij de wijze de beloning zelf liet kiezen. De wijze Sessa dacht intens na over zijn beloning en kwam met het volgende voorstel op de proppen: Sessa vroeg de koning om graankorrel op het eerste vakje van het schaakveld te leggen, 2 korrels op het tweede veld, 4 korrels op het derde, 8 korrels op het vierde enz. Op ieder vakje kwam dus telkens het dubbel aantal graankorrels van het vorige vakje te liggen. De koning was bijna beledigd door de eenvoud en de té bescheiden vergoeding die de wijze vroeg, maar... a Bereken hoeveel graankorrels er liggen op het... 5de vakje 6de vakje 8ste vakje 0de vakje 20ste vakje b Noteer het aantal graankorrels op het 64ste vakje als een macht en reken uit. c Schat hoeveel kilo graankorrels er op het laatste vakje van het schaakbord ligt als je weet dat één korreltje gemiddeld 0,0 gram weegt (ter info: de graanproductie in België in 2006 = kilo, ongeveer ongeveer miljard kilo). 37 E Een macht schrijven als een vermenigvuldiging. 6 = = = = = = Op het laatste vakje ligt kilo (= ongeveer miljard k a Noteer 8 3 als een vermenigvuldiging. b Wat is het grondtal in 8 3? c Wat is de exponent in 8 3? d Noteer 5 2 als een vermenigvuldiging.

4 e Wat is het grondtal in 5 2? f Wat is de exponent in 5 2? 38 B Kruis het juiste antwoord aan. a Een exponent is 5 2 b c Een grondtal is Een kwadraat is 39 V* Het kwadraat van a Wat is het kwadraat van 5? b Is 8 een kwadraat? c Is 000 een kwadraat? d Waarvan is 00 het kwadraat? e Van welke getal is het kwadraat? Hoe heb je dit gezocht? 225 Ja, 9 2 = 8 Neen 0 Van 00, want = = 296. Het is groter dan ,... want = en kleiner dan = Het kwadraat eindigt op ,.. dus dit is alleen mogelijk als. het grondtal eindigt op 4 of op 6. f Zoek zo handig mogelijk het getal waarvan het kwadraat gelijk is aan 296. ) 320 V* Vind het juiste getal. 2 5 (= 5 3 ) a Van welk getal is het kwadraat gelijk aan 44? b Van welk getal is de derdemacht gelijk aan 25? c Welke macht van 3 is gelijk aan 8? d Een macht met exponent 2 is gelijk aan 36. Wat is het grondtal? e Van welk getal is het kwadraat het dubbel van het getal zelf? 6 2

5 32 V* Gebruik je rekenmachine. a Hoeveel kwadraten van natuurlijke getallen zijn er tussen 0 en 00? b Hoeveel kwadraten van natuurlijke getallen zijn er tussen 00 en 200? c Zouden er tussen 200 en 300 meer of minder kwadraten zijn dan tussen 00 en 200? Verklaar je antwoord. 322 V*** Van welk getal is het kwadraat 500 % meer dan het getal zelf? B Bereken de machten van Hoe kun je onmiddellijk een macht van 0 opschrijven? a 0 4 = c = e = b 0 2 = d = f = Noteer het cijfer gevolgd door evenveel nullen als de exponent. 9 (, 4, 9, 6, 25, 36, 49, 64, 8) 4 (2, 44, 69, 96) Telkens minder omdat het grondtal steeds groter wordt B Schrijf als macht van a honderdduizend b tien miljoen c één miljard d honderd e tienduizend f één miljoen V* Tussen welke twee opeenvolgende machten van tien liggen de volgende getallen? a 4583 ligt tussen en b 23 ligt tussen en V*** Schrijf de getallen als een product van een getal met een macht van 0. a = = 2 0³ (of,2 0 4 ) b =.... c 5 ligt tussen en d ligt tussen en V*** In ons zonnestelsel draaien de acht planeten rond de zon. Noteer de afstanden van de planeten tot de zon als een product van een getal met een macht van tien. Naam Afstand tot de zon (km) Mercurius ,8 0 7 Venus Aarde Mars Jupiter Saturnus Uranus Neptunus c 700 = d =...., , , , , , ,5 0 9

GETALLENLEER 4 Gehele getallen: machtsverheffing en vierkantsworteltrekking

GETALLENLEER 4 Gehele getallen: machtsverheffing en vierkantsworteltrekking GETALLENLEER 4 Gehele getallen: machtsverheffing en vierkantsworteltrekking G4 Machten van natuurlijke getallen 9 G5 Vierkantswortels van natuurlijke getallen 0 G Machten en vierkantswortels van gehele

Nadere informatie

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7.

Onderzoek of de rijen rekenkundig, meetkundig of geen van beide zijn. Geef bij de rekenkundige rijen v en t 7 en bij de meetkundige rijen q en t 7. Herhalingsoefeningen Rijen Van de opgaven die geel gemarkeerd zijn, vind je achteraan de oplossingen. De oplossingen van de andere mag je steeds afgeven of er vragen over stellen. Oef 1 Onderzoek of de

Nadere informatie

Hoofdstuk 1 : REKENEN

Hoofdstuk 1 : REKENEN 1 / 6 H1 Rekenen Hoofdstuk 1 : REKENEN 1. Wat moet ik leren? (handboek p.3-34) 1.1 Het decimaal stelsel In verband met het decimaal stelsel: a) het grondtal van ons decimaal stelsel geven. b) benamingen

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

Het schaakbord van koning Shirham

Het schaakbord van koning Shirham Het schaakbord van koning Shirham Dion Gijswijt De Indiase koning Shirham wilde volgens een oud verhaal de uitvinder van het schaakbord, Sissa ben Dahir, rijkelijk belonen voor zijn uitzonderlijke prestatie.

Nadere informatie

Tafelkaart: tafel 1, 2, 3, 4, 5

Tafelkaart: tafel 1, 2, 3, 4, 5 Tafelkaart: tafel 1, 2, 3, 4, 5 1 2 3 4 5 1x1= 1 1x2= 2 1x3= 3 1x4= 4 1x5= 5 2x1= 2 2x2= 4 2x3= 6 2x4= 8 2x5=10 3x1= 3 3x2= 6 3x3= 9 3x4=12 3x5=15 4x1= 4 4x2= 8 4x3=12 4x4=16 4x5=20 5x1= 5 5x2=10 5x3=15

Nadere informatie

Reis door het zonnestelsel

Reis door het zonnestelsel Reis door het zonnestelsel GROEP 7-8 61 70 minuten 1, 23, 32 en 46 De leerling: weet dat de afstanden tussen de planeten heel groot zijn kan zich een voorstelling maken van de afstand van de aarde tot

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

Extra oefeningen hoofdstuk 2: Natuurlijke getallen

Extra oefeningen hoofdstuk 2: Natuurlijke getallen Extra oefeningen hoofdstuk 2: Natuurlijke getallen 2.1 Natuurlijke getallen 1 Rangschik de volgende natuurlijke getallen van klein naar groot. 45 54 56 78 23 25 77 89 2 050 2 505 2 055 2 500 2 005 879

Nadere informatie

Ruitjes vertellen de waarheid

Ruitjes vertellen de waarheid Ruitjes vertellen de waarheid Opdracht 1 Van fouten kun je leren Van fouten kun je leren, jazeker. Vooral als je héél goed weet wat er fout ging. Vandaag leer je handige formules begrijpen door kijken

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN OPTELLEN/AFTREKKEN Zet de getallen onder elkaar in je schrift eerst zelf proberen uit te rekenen bij aftrekken: denk om lenen bij optellen: denk om doorschuiven geen vergissingen? bij lang nadenken: rekenmachine

Nadere informatie

Reis naar andere hemellichamen

Reis naar andere hemellichamen Reis naar andere hemellichamen GROEP 1-2 04 55 minuten De leerling: zonnestelsel verschillend zijn ringen heeft voorwerp drijft of zinkt met stukje ijzer dichtbindstrip Zorg voor de activiteit Zijn alle

Nadere informatie

Gehele getallen: machtsverheffing en vierkantsworteltrekking

Gehele getallen: machtsverheffing en vierkantsworteltrekking 4 Gehele getallen: machtsverheffing en vierkantsworteltrekking Dit kun je al gehele getallen vermenigvuldigen 2 afspraken i.v.m. de volgorde van de bewerkingen toepassen 3 regelmaat en patronen ontdekken

Nadere informatie

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden. EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.

Nadere informatie

SAMENVATTING BASIS & KADER

SAMENVATTING BASIS & KADER SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,

Nadere informatie

(ont)wikkelen. Aantal keer gevouwen Aantal lagen papier

(ont)wikkelen. Aantal keer gevouwen Aantal lagen papier (ont)wikkelen versie 0.5 [4--008] pagina (ont)wikkelen vouwen Wist je dat je een blad papier niet meer dan zeven (misschien acht) keer kunt dubbelvouwen? Om dit te controleren kun je met een stuk papier

Nadere informatie

Reis door het zonnestelsel

Reis door het zonnestelsel Reis door het zonnestelsel GROEP 5-6 41 50 minuten 1, 23 en 32 Zet voor de activiteit Planeten de planeten onder elkaar op het bord, zoals in de tabel. De leerling: weet dat de acht planeten verschillend

Nadere informatie

Thema: Machten en wortels vmbo-kgt12

Thema: Machten en wortels vmbo-kgt12 Auteur VO-content Laatst gewijzigd Licentie Webadres 07 november 2016 CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie https://maken.wikiwijs.nl/57122 Dit lesmateriaal is gemaakt met Wikiwijs Maken

Nadere informatie

REKENTECHNIEKEN - OPLOSSINGEN

REKENTECHNIEKEN - OPLOSSINGEN REKENTECHNIEKEN - OPLOSSINGEN 1] 3,52 m + 13,6 cm =? 3,52 m 3,52 m - 2 13,6 cm 0,136 m - 3 3,656 m eindresultaat 3,66 m 2 cijfers na komma en afronden naar boven 3,52 m 352 cm - 0 13,6 cm 13,6 cm - 1 365,6

Nadere informatie

Leren leven met grote getallen

Leren leven met grote getallen Wiskunde & Onderwijs 8ste jaargang (2012) Leren leven met grote getallen Luc Gheysens Het is merkwaardig om vast te stellen hoe moeilijk we grote getallen kunnen inschatten. Veronderstel dat iemand je

Nadere informatie

Het eetbare zonnestelsel groep 5-7

Het eetbare zonnestelsel groep 5-7 Het eetbare zonnestelsel groep 5-7 Hoe groot is de aarde? En hoe groot is de zon in vergelijking met de aarde? Welke planeet staat het dichtst bij de zon en welke het verst weg? Deze les leren de leerlingen

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Logaritmen. Het tijdstip t waarop S(t) = is op de t-as aangegeven. Dat tijdstip komt niet mooi uit. Dat tijdstip noemen 5,3

Logaritmen. Het tijdstip t waarop S(t) = is op de t-as aangegeven. Dat tijdstip komt niet mooi uit. Dat tijdstip noemen 5,3 5 Logaritmen 1 We bekijken de Shigella-bacterie uit opgave 1 van de vorige paragraaf. Hieronder staat een stukje van de grat fiek van de functie S(t) = 5,. Het tijdstip t waarop S(t) = 100.000 is op de

Nadere informatie

Reis naar andere hemellichamen

Reis naar andere hemellichamen Reis naar andere hemellichamen GROEP 5-6 44 80 minuten 1, 5, 6, 8, 23, 54 en 55 De leerling: weet welke planeten manen hebben weet welke planeten ringen hebben weet welke kleur de verschillende planeten

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam:

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam: Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs recept voor glazen bananenmilkshake bananen, l ijs, l melk,1 l limonadesiroop 1 cl ijs 1 liter Schil de bananen. Snijd ze in grote

Nadere informatie

tafels van 6,7,8 en 9 X

tafels van 6,7,8 en 9 X tafels van 6,7,8 en 9 X 6 7 8 9 6 36 42 48 54 7 42 49 56 63 8 48 56 64 72 9 54 63 72 81 1 alle tafels X 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 2 2 4 6 8 10 12 14 16 18 20 3 3 6 9 12 15 18 21 24 27

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

LEERWERKBOEK. 2F Meten en meetkunde. Les Schaal

LEERWERKBOEK. 2F Meten en meetkunde. Les Schaal LEERWERKBOEK 2F Meten en meetkunde Les Schaal 1 REKENBLOKKEN LES 1 SCHAAL EVEN OEFENEN LENGTEWEETJES 10 10 10 10 10 10 km hm dam m dm cm mm : 10 : 10 : 10 : 10 : 10 : 10 1 Reken om naar de andere maat.

Nadere informatie

Het Land van Oct. Marte Koning Frans Ballering. Vierkant voor Wiskunde Wiskundeclubs

Het Land van Oct. Marte Koning Frans Ballering. Vierkant voor Wiskunde Wiskundeclubs Het Land van Oct Marte Koning Frans Ballering Vierkant voor Wiskunde Wiskundeclubs Hoofdstuk 1 Inleiding Hoi, ik ben de Vertellende Teller, en die naam heb ik gekregen na mijn meest bekende reis, de reis

Nadere informatie

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam:

rekentrainer jaargroep 6 Vul de maatbekers. Kleur. Zwijsen naam: Zwijsen jaargroep 6 naam: reken-wiskundemethode voor het basisonderwijs recept voor 6 glazen bananenmilkshake 2 bananen 0,25 l ijs 0,40 l melk 0,10 l limonadesiroop 100 cl 0 ijs 1 liter 0 Schil de bananen.

Nadere informatie

7 a. naam Hulp blad 1. 1 Reken uit (kolomsgewijs) 2 Reken uit met (cijferen) Je mag de hulpsommen opschrijven

7 a. naam Hulp blad 1. 1 Reken uit (kolomsgewijs) 2 Reken uit met (cijferen) Je mag de hulpsommen opschrijven naam Hulp blad 1 1 Reken uit (kolomsgewijs) Je mag de hulpsommen opschrijven. Met hulpsommen: 47 Zonder hulpsommen: 48 4 4 7 1 9 1 + 8 16 + 4 7 4 8 4 8 7 9 5 7 8 6 + + + + 6 1 9 7 6 7 8 5 9 5 9 6 8 + +

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Antwoorden bij Rekenen met het hoofd

Antwoorden bij Rekenen met het hoofd Antwoorden bij Rekenen met het hoofd Hoofdstuk Basisbewerkingen. Bewerkingen in beeld a. : splitsen in 5 en. Eerst min 5, dan min 0 en tenslotte nog min : splitsen in 5 en, die uitvoeren en dan nog stapsgewijs

Nadere informatie

1.1 Rekenen met letters [1]

1.1 Rekenen met letters [1] 1.1 Rekenen met letters [1] Voorbeeld 1: Een kaars heeft een lengte van 30 centimeter. Per uur brand er 6 centimeter van de kaars op. Hieruit volgt de volgende woordformule: Lengte in cm = -6 aantal branduren

Nadere informatie

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar Vraag 1: (pg 64 oefening 2 - Basisboek LVS wiskunde toetsen 2) Het verschil tussen

Nadere informatie

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag

Basisvaardigheden algebra. Willem van Ravenstein. 2012 Den Haag Basisvaardigheden algebra Willem van Ravenstein 2012 Den Haag 1. Variabelen Rekenenis het werken met getallen. Er zijn vier hoofdbewerkingen: optellen, aftrekken, vermenigvuldigen en delen. Verder ken

Nadere informatie

11.0 INTRO. Fractals. Hoofdstuk 11 MACHTEN

11.0 INTRO. Fractals. Hoofdstuk 11 MACHTEN 97 11.0 INTRO Fractals 1 a Neem een strook papier. Vouw de linkerkant op de rechterkant. Vouw weer de linkerkant op de rechter. Doe dat nog twee keer. Je hebt dan dus in totaal 4 keer gevouwen. b Vouw

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis V-1a 4 8 + 4 1,80 + 4 0,60 = 32 + 7,20 + 2,40 = 41,60. Ze is 41,60 kwijt. 4 (8 + 1,80 + 0,60) = 4 10,40 = 41,60. Ze krijgt hetzelfde edrag. c 8 + 1,80 + 0,60 4 = 8 + 1,80 + 2,40 = 12,20. Je

Nadere informatie

wizbrain maart 2014 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan

wizbrain maart 2014 Veel succes en vooral veel plezier.!! je hebt 75 minuten de tijd rekenmachine is niet toegestaan www.e-nemo.nl 20 maart 2014 www.education.ti.com Veel succes en vooral veel plezier.!! Stichting Wiskunde Kangoeroe rekenmachine is niet toegestaan je hebt 75 minuten de tijd www.smart.be www.sanderspuzzelboeken.nl

Nadere informatie

1 Basisrekenen en letterrekenen.

1 Basisrekenen en letterrekenen. Uitwerkingen versie 0 Basisrekenen en letterrekenen. Opgave. Opbouw van getallen. a 605 6 00 + 5 b 3.78 3 000+ 00+ 7 0+ 8 c 56.890 56 000+ 8 00+ 9 0+ 0 d 900.30 900 000+ 00+ 0+ 0 e 3.56.675 3.000.000+

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Eenheden. In het dagelijks leven maken we van talloze termen gebruik, waarvan we ons de werkelijke herkomst eigenlijk niet goed realiseren.

Eenheden. In het dagelijks leven maken we van talloze termen gebruik, waarvan we ons de werkelijke herkomst eigenlijk niet goed realiseren. Eenheden In het dagelijks leven maken we van talloze termen gebruik, waarvan we ons de werkelijke herkomst eigenlijk niet goed realiseren. Hoe we grote getallen klein maken Als we naar de groenteboer gaan

Nadere informatie

lende hemellichamen verschillende zijn qua temperatuur, zwaartekracht, atmosfeer en zuurstof andere hemellichamen anders uit zouden zien

lende hemellichamen verschillende zijn qua temperatuur, zwaartekracht, atmosfeer en zuurstof andere hemellichamen anders uit zouden zien Leven in de ruimte GROEP 5-6 59 80 minuten 1, 42, 46 en 54 De leerling: lende hemellichamen verschillende omstandigheden zijn qua temperatuur, zwaartekracht, atmosfeer en zuurstof andere hemellichamen

Nadere informatie

De planeten Reis door het zonnestelsel

De planeten Reis door het zonnestelsel De planeten Reis door het zonnestelsel Cgroep 1-2 01 tijdsduur 40 minuten kerndoelen 1, 46 en 54 lesdoelen De leerling: (her)kent de namen van de acht planeten weet dat de planeten om de zon draaien kan

Nadere informatie

dag en nacht Vragen behorende bij de clip dag en nacht op

dag en nacht Vragen behorende bij de clip dag en nacht op RUIMTE Naam: dag en nacht Vragen behorende bij de clip dag en nacht op www.schooltvbeeldbank.nl 1. Planeten Uit hoeveel planeten bestaat ons zonnestelsel? De aarde en dan nog.. planeten. (vul aantal in)

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Procenten 75% 33% 10% 50% 40% 25% 50% 100%

Procenten 75% 33% 10% 50% 40% 25% 50% 100% Procenten 50% 75% 25% 100% 10% 40% 50% 33% Uitleg procenten & Hoofdstuk 1A: hele procenten Uitleg : Procent betekent: 1/100 deel Bij procentrekenen werken we met HOEVEELHEDEN Bij een hoeveelheid van iets

Nadere informatie

1 Inleiding 2 Lengte en zijn eenheden 3 Omtrek 4 Oppervlakte 5 Inhoud. Meten is weten. Joke Braaksma. November 2010

1 Inleiding 2 Lengte en zijn eenheden 3 Omtrek 4 Oppervlakte 5 Inhoud. Meten is weten. Joke Braaksma. November 2010 November 2010 Wat kunnen we allemaal meten? Wat kunnen we allemaal meten? 1. Lengte / breedte / hoogte / omtrek / oppervlakte / inhoud en volume 2. Tijd 3. Gewicht 4. Geld 5. Temperatuur Wij gaan ons

Nadere informatie

a a Hoe hoog is de kleinste toren op het plaatje? 97 m b d Hoe oud zijn de Martinitoren en de Eiffeltoren? De Martinitoren is meer dan

a a Hoe hoog is de kleinste toren op het plaatje? 97 m b d Hoe oud zijn de Martinitoren en de Eiffeltoren? De Martinitoren is meer dan les 14 59 Aan welke keersommen uit de tafels tot 10 denk je? b 9 70 = 630 6 80 = 480 9 7 en 6 8 a a 4 30 = 120 4 50 = 200 4 3 en 4 5 c 8 80 = 640 7 60 = 420 8 8 en 7 6 b d = 5600 = 7200 Meer antwoorden.

Nadere informatie

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg.

Zwijsen. jaargroep 4. naam: reken-wiskundemethode voor het basisonderwijs. rekentrainer. jij. Bezoek alle leuke dingen. Teken de weg. Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs! jij rekentrainer Bezoek alle leuke dingen. Teken de weg. Groep blad 1 Hoe komt de hond bij het bot? Teken. Kleur de tegels. Kleur

Nadere informatie

Rekenen aan wortels Werkblad =

Rekenen aan wortels Werkblad = Rekenen aan wortels Werkblad 546121 = Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk zijn hoe de antwoorden

Nadere informatie

w e r k b o e k a n t w o o r d e n blok 225 + Hoeveel knikkers heeft Li? Teken op de getallenlijn en reken uit.

w e r k b o e k a n t w o o r d e n blok 225 + Hoeveel knikkers heeft Li? Teken op de getallenlijn en reken uit. jaargroep a n t w o o r d e n Zwijsen reken-wiskundemethode voor het basisonderwijs + blok = w e r k b o e k 00 0 300 Hoeveel knikkers heeft Li? Teken op de getallenlijn en reken uit. Les Overal getallen

Nadere informatie

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3

16.2 TREK AF VAN. Hoofdstuk 16 HAAKJES VWO. 8 a 16.0 INTRO. 1 b De uitkomsten zijn allemaal 3. c (n + 1)(n 1) (n + 2)(n 2) = 3 Hoofdstuk 6 HAAKJES VWO 6.0 INTRO 6. TREK AF VAN 8 a b De uitkomsten zijn allemaal. c (n + )(n ) (n + )(n ) = d - - = -0,75 -,75 = b De uitkomsten zijn allemaal. c n + (n + ) (n + ) = + 6 4 4 = 6 4 = d

Nadere informatie

BLAD 31: LENGTE, INHOUD, GEWICHT

BLAD 31: LENGTE, INHOUD, GEWICHT BLAD 31: LENGTE, INHOUD, GEWICHT 1. Hoeveel euro moet je ongeveer terug krijgen? Laat op het kladblaadje zien hoe je het uitrekent. 2. Alle maten op een rij Bouw samen met je juf of meester het maatstelsel

Nadere informatie

Oplossingen toetsmodule hoofdstuk 11: Diagrammen en grafieken

Oplossingen toetsmodule hoofdstuk 11: Diagrammen en grafieken Oplossingen toetsmodule hoofdstuk 11: Diagrammen en grafieken 1 Op de verpakking van voedingsmiddelen vinden we vaak een tabel met de samenstelling van het voedingsproduct. Op een pak ontbijtgranen vinden

Nadere informatie

Overstapprogramma 6-7

Overstapprogramma 6-7 Overstapprogramma - Cijferend optellen 9 Verdeel het getal. Het getal 8 kun je verdelen in: duizendtallen honderdtallen tientallen eenheden D H T E 8 D H T E 8 = 8 9 9 9 = = = = Zet de getallen goed onder

Nadere informatie

REKENVAARDIGHEID BRUGKLAS

REKENVAARDIGHEID BRUGKLAS REKENVAARDIGHEID BRUGKLAS Schooljaar 008/009 Inhoud Uitleg bij het boekje Weektaak voor e week: optellen en aftrekken Weektaak voor e week: vermenigvuldigen Weektaak voor e week: delen en de staartdeling

Nadere informatie

bijlagen bij groep 5 en 6

bijlagen bij groep 5 en 6 bijlagen bij groep 5 en 6 groep 5 en 6 honing, melk en eieren 75 bijlage 1 opdrachtblad bijendans Bekijk voor deze opdrachten op http://www.fi.uu.nl/toepassingen/00596/ de filmpjes over de bijendans. De

Nadere informatie

LESFICHE 1. Handig rekenen. Lesfiche 1. 1 Procent & promille. 2 Afronden. Procent of percent (%) betekent letterlijk per honderd.

LESFICHE 1. Handig rekenen. Lesfiche 1. 1 Procent & promille. 2 Afronden. Procent of percent (%) betekent letterlijk per honderd. Lesfiche 1 1 Procent & promille Handig rekenen Procent of percent (%) betekent letterlijk per honderd. 5 5 % is dus 5 per honderd. In breukvorm wordt dat of 0,05 als decimaal getal. Promille ( ) betekent

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Opgaven Fibonacci-getallen Datastructuren, 23 juni 2017, Werkgroep.

Opgaven Fibonacci-getallen Datastructuren, 23 juni 2017, Werkgroep. Opgaven Fibonacci-getallen Datastructuren, 3 juni 017, Werkgroep Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege Cijfer: Op een toets krijg je meestal zes tot acht

Nadere informatie

TOELICHTING REKENEN MET DECIMALE GETALLEN

TOELICHTING REKENEN MET DECIMALE GETALLEN TOELICHTING REKENEN MET DECIMALE GETALLEN LEERSTAP 1 LEERSTAP 2 LEERSTAP 3 LEERSTAP 4 LEERSTAP 5 LEERSTAP 6 Rekenvlinder Rekenen met decimale getallen Toelichting Uitgeverij Zwijsen B.V., Tilburg www.rekenvlinder.nl

Nadere informatie

Blok 1 Herhalingstoets

Blok 1 Herhalingstoets 7 herhalingstoetsen Blok 1 Herhalingstoets 1 Hoeveel ongeveer? Maak vast. 2 Hoeveel ongeveer? Kleur het juiste wolkje. 9000 10.000 20.000 30.000 40.000 50.000 5899 + 2900 8000 40.109 3 Reken uit. 4 Reken

Nadere informatie

REKENMODULE LENGTE/SCHAAL

REKENMODULE LENGTE/SCHAAL REKENMODULE LENGTE/SCHAAL Rekenen voor vmbo-groen en mbo-groen Colofon RekenGroen. Rekenen voor vmbo- groen en mbo- groen Extra Rekenmodule Lengte/Schaal Leerlingtekst Versie 1.0. Oktober 2012 Auteurs:

Nadere informatie

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen.

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Het werkt als volgt, Je maakt een opgave bijv. opgave 1. Hoe gaat het ook al weer denk je dan. Nou,

Nadere informatie

BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent.

BLAD 16: HAM EN KAAS. b. Bij de maatbeker horen verschillende inhoudsmaten. Hiernaast staan ze op een rij. Schrijf op de stippeltjes wat het betekent. BLAD 16: HAM EN KAAS 1. Hoeveel is het goedkoper? a. Twee aanbiedingen bij de supermarkt. Hoeveel cent is het goedkoper? 6 witte bolletjes:... 10 scharreleieren:... b. Reken van deze aanbiedingen ook uit

Nadere informatie

rekentrainer jaargroep 8 Hoeveel kilometer na 10 minuten? Kleur. Zwijsen naam: na 1 minuut: 0,200 km na 1 minuut: 0,040 km na 1 minuut: 0,008 km

rekentrainer jaargroep 8 Hoeveel kilometer na 10 minuten? Kleur. Zwijsen naam: na 1 minuut: 0,200 km na 1 minuut: 0,040 km na 1 minuut: 0,008 km Zwijsen jaargroep 8 naam: reken-wiskundemethode voor het basisonderwijs na 1 minuut: 0,200 km 0 10.000 m 0 10 km na 1 minuut: 0,040 km 0 1000 m 0 1 km na 1 minuut: 0,008 km 0 100 m 0 0,1 km rekentrainer

Nadere informatie

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12 Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde

Nadere informatie

w e r k b o e k a n t w o o r d e n blok Hoeveel keer moet ik 15 gooien? 60 punten Matz wil 60 punten halen met blikgooien. Maak sommen.

w e r k b o e k a n t w o o r d e n blok Hoeveel keer moet ik 15 gooien? 60 punten Matz wil 60 punten halen met blikgooien. Maak sommen. jaargroep a n t w o o r d e n Zwijsen reken-wiskundemethode voor het basisonderwijs blok 6 punten keer moet ik w e r k b o e k Matz wil 6 punten halen met blikgooien. Maak sommen. Les Overal getallen Maak

Nadere informatie

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

Afspraken hoofdrekenen eerste tot zesde leerjaar

Afspraken hoofdrekenen eerste tot zesde leerjaar 24/04/2013 Afspraken hoofdrekenen eerste tot zesde leerjaar Sint-Ursula-Instituut Rekenprocedures eerste leerjaar Rekenen, hoe doe ik dat? 1. E + E = E 2 + 5 = 7 Ik heb er 2. Er komen er 5 bij. Dat is

Nadere informatie

2 BBL. Oppervlakte. 5.1 Eenheden van oppervlakte

2 BBL. Oppervlakte. 5.1 Eenheden van oppervlakte H5 Oppervlakte 2 BBL 5.1 Eenheden van oppervlakte 1a. Vraag aan je docent een vel met hokjes van 1 cm bij 1 cm. b. Teken op het papier een vierkant met zijden van 1 cm. c. Schrijf in het vlak 1 cm². d.

Nadere informatie

Voorkennis : Breuken en letters

Voorkennis : Breuken en letters Hoofdstuk 1 Getallen en Variabelen (V4 Wis A) Pagina 1 van 13 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x = 12

Nadere informatie

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 Inhoud Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 1/10 Eenheden Iedere grootheid heeft zijn eigen eenheid. Vaak zijn er meerdere eenheden

Nadere informatie

Hoe schrijf je de logaritmische waarden welke bij db s horen?

Hoe schrijf je de logaritmische waarden welke bij db s horen? Die moeilijke decibellen toch. PA0 FWN. Inleiding. Ondanks dat in Electron al vaak een artikel aan decibellen is geweid, en PA0 LQ in het verleden al eens een buitengewoon handige tabel publiceerde waar

Nadere informatie

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd?

2.1 Kennismaken met breuken. 2.1.1 Deel van geheel. Opdracht 1 Welk deel van deze cirkel is zwart ingekleurd? Oefenopdrachten hoofdstuk Gebroken getallen RekenWijzer, oefenopdrachten hoofdstuk Gebroken getallen. Kennismaken met breuken.. eel van geheel Opdracht Welk deel van deze cirkel is zwart ingekleurd? deel

Nadere informatie

De wereld in getallen 3 Lessuggestie groep 8 Werkbladen

De wereld in getallen 3 Lessuggestie groep 8 Werkbladen De wereld in getallen Lessuggestie groep Werkbladen Rekenspelletjes Maak samen sommen Prik om de beurt een getal in het vak. Schrijf dat getal bij een som. Maak zo sommen. Reken om de beurt een som uit.

Nadere informatie

EUROPESE KANGOEROE WISKUNDE WEDSTRIJD. BASISSCHOOL GROEP 7 en GROEP 8

EUROPESE KANGOEROE WISKUNDE WEDSTRIJD. BASISSCHOOL GROEP 7 en GROEP 8 EUROPESE KANGOEROE WISKUNDE WEDSTRIJD vrijdag 23 maart 200 BASISSCHOOL GROEP 7 en GROEP 8 Welkom bij de Kangoeroe, leuk dat je meedoet! Je hebt 75 minuten de tijd. Maak van de opgaven gewoon wat je maken

Nadere informatie

RekenWijzer, uitwerkingen hoofdstuk 1 Hele getallen

RekenWijzer, uitwerkingen hoofdstuk 1 Hele getallen Uitwerkingen hoofdstuk 1 Hele getallen 1.1 Kennismaken met hele getallen 1.1.1 Betekenis van getallen Opdracht 1.1 a 999 b 100 Opdracht 1.2 a 31 b Nee, voor 10 000 koop je geen huis. c 36 liter Opdracht

Nadere informatie

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling

1.1.2. Wiskundige taal. Symbolen om mee te rekenen + optelling - aftrekking. vermenigvuldiging : deling Examen Wiskunde: Hoofdstuk 1: Reële getallen: 1.1 Rationale getallen: 1.1.1 Soorten getallen. Een natuurlijk getal is het resultaat van een tellg van een edig aantal dgen. Een geheel getal is het verschil

Nadere informatie

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE KUN 2003 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Gekleurde sokken Op de planeet Swift B6 wonen de Houyhnhnms. Ze lijken sprekend op paarden;

Nadere informatie

Rekenregels van machten

Rekenregels van machten 4 Rekenregels vn mchten Dit kun je l 1 mchten met een ntuurlijke exponent berekenen mchten met een gehele exponent berekenen 3 terminologie in verbnd met de mchtsverheffing correct gebruiken Test jezelf

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

groep 8 blok 7 antwoorden Malmberg s-hertogenbosch

groep 8 blok 7 antwoorden Malmberg s-hertogenbosch blok 7 groep 8 antwoorden Malmberg s-hertogenbosch blok 7 les 3 3 Reken de omtrek en de oppervlakte van de figuren uit. Gebruik m en m 2. 1 m C Omtrek figuur C 20 m Oppervlakte figuur C 22 m 2 A B Omtrek

Nadere informatie

Graphics. Small Basic graphics 1/6

Graphics. Small Basic graphics 1/6 Small Basic graphics 1/6 Graphics Naast het werken met tekst kan je in Small Basic ook werken met grafische elementen: lijnen, vormen en kleuren. Hierbij gebruik je het grafische venster met de witte achtergrond.

Nadere informatie

HOE VIND JE EXOPLANETEN?

HOE VIND JE EXOPLANETEN? LESBRIEF GEEF STERRENKUNDE DE RUIMTE! ZOEKTOCHT EXOPLANETEN Deze NOVAlab-oefening gaat over een van de manieren om planeten buiten ons zonnestelsel op te sporen. De oefening is geschikt voor de bovenbouw

Nadere informatie

7 a patroonnummer a patroonnummer a h = z

7 a patroonnummer a patroonnummer a h = z Hoofdstuk 3 FORMULES 3.1 PATRONEN EN FORMULES 3 a 10 22 c? d De beweringen a b = b a en a + b = b + a zijn juist. e 15 a 12 a 18 a f a + 8 10 + a a + 14 b zijde vierkant 3 4 5 6 7 aantal gekleurde hokjes

Nadere informatie

Sterrenkunde. Materialen Karton Meetlat Passer Touw Potlood Schaar Lange stok

Sterrenkunde. Materialen Karton Meetlat Passer Touw Potlood Schaar Lange stok Pruiken en revoluties Groep 7 Handleiding voor de leerkracht Deze handleiding en de opdrachten zijn bedoeld als aanvulling op de geschiedenislessen over Pruiken en revoluties. De lesonderdelen beschreven

Nadere informatie

6 a 22,5 gram b v = 1,5m. 7 a 1,95 kg b g = 0,78 v c 13 / 0,78 16,7 dm 3. 8 a. b p = 200d

6 a 22,5 gram b v = 1,5m. 7 a 1,95 kg b g = 0,78 v c 13 / 0,78 16,7 dm 3. 8 a. b p = 200d Hoofdstuk 1 GETALLEN EN GRAFIEKEN 1. INTRO 1 a De slak klimt een uur met constante snelheid, glijdt dan een uur langzaam naar eneden, stijgt dan weer een uur, enz. 1,5 m/u c,5 m/u d 8 uur en 4 minuten

Nadere informatie

rekentrainer jaargroep 5 Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Zwijsen naam:

rekentrainer jaargroep 5 Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Zwijsen naam: Zwijsen jaargroep naam: reken-wiskundemethode voor het basisonderwijs rekentrainer Timo loopt steeds verder weg. Teken Timo bij de kruisjes op de weg en maak de tekening af. Groep blad Vul in. 0 0 7 70

Nadere informatie

= Om van de zoo naar school te gaan, moet Kleine Kangoe twee keuzes maken. Noem deze keuzes A en B.

= Om van de zoo naar school te gaan, moet Kleine Kangoe twee keuzes maken. Noem deze keuzes A en B. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Koala: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w. 2.

Nadere informatie

Overzicht rekenstrategieën

Overzicht rekenstrategieën Overzicht rekenstrategieën Groep 3 erbij tot tien Groep 3 eraf tot tien Groep 4 erbij tot twintigt Groep 4 eraf tot twintigt Groep 4 erbij tot honderd Groep 4 eraf tot honderd Groep 4 en 5 tafels tot tien

Nadere informatie

WISKUNDE-ESTAFETTE 2011 Uitwerkingen

WISKUNDE-ESTAFETTE 2011 Uitwerkingen WISKUNDE-ESTAFETTE 2011 Uitwerkingen 1 C D O A O B Omdat driehoek ACD gelijkbenig is, is CAD = ACD en daarmee zien we dat 2 CAD+ ADC = 180. Maar we weten ook dat 180 = ADC + ADB. Dus ADB = 2 CAD. Driehoek

Nadere informatie

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren Uren, Dagen, Maanden, Jaren,. Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren 1 minuut 60 seconden 1 uur 60 minuten 1 half uur 30 minuten 1 kwartier 15 minuten 1 dag (etmaal) 24 uren 1 week

Nadere informatie