Hoezo denkactiviteiten?

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Hoezo denkactiviteiten?"

Transcriptie

1 Hoezo denkactiviteiten? Paul Drijvers, Freudenthal Instituut Peter van Wijk, ctwo/aps

2 N F P H Afstand tot F Afstand tot P

3 N F P H

4 N F P H Is dit een wiskundige denkactiviteit? Waarom?

5 Rode draad van de presentatie Denkactviteiten volgens ctwo Denkactiviteiten coderen over denkactiviteiten rond denkactiviteiten Denkactiviteiten op het

6

7 Wiskundige denkactiviteiten zijn natuurlijk niet te scheiden omdat ze onderling verweven zijn. Het gaat er in de lespraktijk om werk te maken van deze verschillende aspecten, zodat leerlingen niet alleen kennis memoriseren en reproduceren maar ook een zekere bekwaamheid ontwikkelen in het gebruiken en toepassen van deze wiskundige kennis.

8 Bereken exact de lengte van GP Welke denkactiviteit(en)? 1. Modelleren/algebraisere n 2. Ordenen/structureren 3. Analytisch denken / probleemoplossen 4. Formules manipuleren 5. Abstraheren 6. Logisch redeneren en bewijzen

9

10 (Basis)vaardigheden, reproductie, weten dat Doelen van wiskundeonderwijs Denkvaardigheden, productie, weten hoe en weten waarom Zie Polya, 1945; Schoenfeld, 1992; Van Streun, 2001

11 Bloom s LOTS & HOTS: lower resp. higher order thinking skills. We schrijven Niets nieuws onder de zon dus!

12 En toch: Pilotscholen binnen ctwo vragen om meer handvatten. Waarom? Er wordt heel divers gedacht over wat Wiskundige Denkactiviteiten (WDA) zijn. Men wil concrete praktijkvoorbeelden.

13 Werkgroep Wiskundige Denkactiviteiten Opdracht: ontwikkel concrete handvatten met praktijkvoorbeelden voor de pilotscholen Werkgroep Tussendoelen Onderbouw Opdracht: opdrachten ontwikkelen bij de tussendoelen, inclusief wiskundige denkactiviteiten

14 Bevindingen binnen de werkgroep WDA: Kijk naar de kwaliteit van de wiskundige opdrachten die in het wiskundeonderwijs worden gebruikt, vanaf de eerste introductie van een nieuw begrip tot en met de toetsing op het centraal schriftelijk eindexamen. Daarnaast is de rol van de wiskundeleraar van even groot belang. Allerlei vormen van interactie tussen de leerlingen en de wiskundeleraar zijn in dit verband cruciaal.

15 Kwaliteit wiskundige opdrachten: Reproductie Van leerlingen wordt verwacht dat ze direct herkennen welke kennis of vaardigheid leidt tot een correct antwoord. Het gaat in die opgave om het toetsen van Weten dat, feitelijke kennis en algoritmische methoden die leerlingen paraat moeten hebben. Die herkenning kan door oefenen geïsoleerd ingeslepen zijn of ontleend zijn aan een breder betekenisrijk overzicht. Productie Een opgave van dit type noemen we meestal een probleem. Er bestaat pas een probleem, wanneer een persoon de oplossing niet onmiddellijk kan geven of een algoritmische methode kan vinden. Een probleem vraagt in die definitie om een analyse van de probleemsituatie en een zoekprocedure. Het oplossingsproces convergeert naar een oplossing. Van Streun, A. (in druk). Denkactiviteiten. In P. Drijvers, A. van Streun & B. Zwaneveld, Handboek Wiskundedidactiek. Utrecht: Epsilon.

16 Zo zal een tweedegraads vergelijking van het type (x - 2) = 16 in de loop van het derde leerjaar een routinesom (moeten) zijn. Een tweedeklasser die voor het eerst dit type vergelijking ziet, zal deze opgave als een probleem ervaren.

17 Rol wiskundeleraar: Coachen van leerlingen bij het aanpakken van nietroutinetaken Leren zelf te monitoren Leerlingen leren zichzelf vragen te stellen tijdens hun voortgang en zelf te monitoren hoe ver ze zijn gevorderd in het proces van aanpak en oplossen. Het is de docent die hen daartoe aanzet en daar ook waarde aan toekent. Reflecteren op en expliciteren van denkmethoden Leerlingen leren niet vanzelf een adequate manier om wiskunde toe te passen in geschikte opdrachten. Het is de docent die stelselmatig en systematisch leerlingen coacht in het reflecteren op en expliciteren van goede denkmethoden

18 Rol wiskundeleraar: denkvragen stellen, zoals... Wat zou jij gedaan hebben? Wat is de overeenkomst met? Kun je een voorbeeld geven? Waar zouden we hiervoor hulp kunnen halen? Zijn we iets belangrijks vergeten? Wat bedoel je hiermee? Welke stappen heb je tot nu toe gezet? Kunnen we van deze bron op aan? Op wat voor manieren kan dit nog meer? Kun je het belangrijkste idee er uit noemen? Hoe zou een andere volgorde de uitkomst beïnvloeden? Hoe zou je anders kunnen beginnen? Kun je het verschil geven tussen en?

19 Rol wiskundeleraar in lessituaties: Creëer een veilige omgeving Durf je als docent kwetsbaar op te stellen (zelf oplossing ook niet meteen weten) Laat zien hoe je zelf als expert een probleem aanpakt Betrek alle leerlingen erbij Zorg voor doorlopende leerlijnen rond denkactiviteiten, ook van onderbouw naar bovenbouw

20 Verschijningsvormen WDA: Opgaven boek, toets, examen In de les, interactie met de docent Praktische opdracht, sectorwerkstuk

21 Praktische opdracht V5 Wiskunde A: Albert Heijn heeft in sommige winkels een zelfscan, een apparaat waarbij een klant zonder tussenkomst van een klassieke kassa zelf kan afrekenen. Hoe groot is de kans dat een klant de winkel kan verlaten met drie gestolen/vergeten af te rekenen artikelen?

22 Een vierkant en een cirkel hebben gelijke oppervlakte. Het middelpunt van de cirkel valt samen met het snijpunt van de diagonalen van het vierkant. De cirkel snijdt een zijde van het vierkant in de punten A en B. Druk de lengte van AB uit in de straal van de cirkel.

23

24 Patronen maken voor brugklas (havo/vwo) In paragraaf 1 heb je gezien hoe je met stippen, vierkantjes, lucifers en blokjes patronen kunt vormen. Ontwerp nu zelf een patroon en stel de bijbehorende formule op. Bron: Lessuggestie van de Wageningse Methode

25 Denkactiviteiten op het havo B: regulier en pilot Pilot (p =.29) Regulier (p =.33)

26 Wiskundige Denkactiviteit: Hoger orde denken Moet passen in een leerlijn, dus geen puzzeltje In onderbouw mee beginnen Hangt af van wanneer je de opdracht aanbiedt

27 Wiskundige Denkactiviteit: Productie, probleem, geen routinesom, geen reproductie Moet op het netvlies van uitgevers, auteurs, CVE/Cito, docenten Eigenlijk niets nieuws!!

28 Handvatten: Wat bedoelen ze toch met. Denkactiviteiten? Artikel Nieuwe Wiskrant Flyer met toelichting en voorbeelden uit onder- en bovenbouw -> tabblad WDA

29 Vraag: Maak van deze stomphoekige driehoek scherphoekige driehoeken Is dit een puzzeltje of een WDA?

30 Dank voor uw aandacht! Paul Drijvers, Peter van Wijk,

Wiskundige DenkActiviteiten in de nieuwe (examen)programma's

Wiskundige DenkActiviteiten in de nieuwe (examen)programma's Wiskundige DenkActiviteiten in de nieuwe (examen)programma's Paul Drijvers Freudenthal Instituut Universiteit Utrecht p.drijvers@uu.nl www.uu.nl/staff/phmdrijvers 2013-09-20 Afstand tot F Rijden naar Oostenrijk

Nadere informatie

WDA in de examens. Ruud Stolwijk (Cito) NVvW SLO - conferentie 25 september 2017

WDA in de examens. Ruud Stolwijk (Cito) NVvW SLO - conferentie 25 september 2017 WDA in de examens Ruud Stolwijk (Cito) NVvW SLO - conferentie 25 september 2017 Even voorstellen: Ruud Stolwijk docent wiskunde sinds 1987 toetsdeskundige bij Cito sinds 2007 voorzitter Alympiadecommissie

Nadere informatie

Wiskundige denkactiviteiten in de wiskundemethoden

Wiskundige denkactiviteiten in de wiskundemethoden Wiskundige denkactiviteiten in de wiskundemethoden SLO nationaal expertisecentrum leerplanontwikkeling Studiedag NVvW 2015 Agenda Wie? Wat? Hoelang SLO Inleiding 2 minuten Getal en Ruimte Presentatie 10

Nadere informatie

Wiskundige Denk- Activiteiten in Praktijk

Wiskundige Denk- Activiteiten in Praktijk Wiskundige Denk- Activiteiten in Praktijk VELON conferentie 2015 NRO-PPO405-14-502 Paul Drijvers Freudenthal Instituut Universiteit Utrecht p.drijvers@uu.nl www.fisme.science.uu.nl/ www.uu.nl/staff/phmdrijvers

Nadere informatie

De 2015 programma s wiskunde B van havo en vwo. 9 november 2013 Ruud Stolwijk Cito, Arnhem Alma Taal

De 2015 programma s wiskunde B van havo en vwo. 9 november 2013 Ruud Stolwijk Cito, Arnhem Alma Taal De 2015 programma s wiskunde B van havo en vwo 9 november 2013 Ruud Stolwijk Cito, Arnhem Alma Taal 1 Inhoud - programma Even voorstellen Aanleiding vernieuwing wiskundeprogramma s Inhoud nieuwe programma

Nadere informatie

Wat bedoelen ze toch met... denkactiviteiten?

Wat bedoelen ze toch met... denkactiviteiten? In elke aflevering van de rubriek Wat bedoelen ze toch met... staat een spraakmakend begrip uit de wiskundedidactiek of de onderwijskunde centraal, waarover veel is geschreven, maar waarvan toepassing

Nadere informatie

Wiskundige Denkactiviteiten (WDA)

Wiskundige Denkactiviteiten (WDA) Wiskundige Denkactiviteiten (WDA) SLO nationaal expertisecentrum leerplanontwikkeling 28 september 2016 Peter van Wijk Programma Voorbeelden van WDA s Wat zijn WDA s? Hoe zie je dit terug in de centrale

Nadere informatie

PTA VWO wiskunde B 1518

PTA VWO wiskunde B 1518 PTA VWO wiskunde B 1518 Inleiding Bij het vak wiskunde B leren leerlingen parate kennis en vaardigheden aan om daarmee wiskundige denkactiviteiten te ontplooien en te ontwikkelen. Met dit wiskundig denkvermogen

Nadere informatie

Getal & Ruimte 12 e editie. havo/vwo onderbouw

Getal & Ruimte 12 e editie. havo/vwo onderbouw Getal & Ruimte 12 e editie havo/vwo onderbouw De nieuwe 12 e editie In het voorjaar 2017 komt Noordhoff Uitgevers met de nieuwe 12 e editie Getal & Ruimte in de havo/vwo onderbouw! Productinformatie Lancering

Nadere informatie

Algebra leren met deti-89

Algebra leren met deti-89 Algebra leren met deti-89 Werkgroep T 3 -symposium Leuven 24-25 augustus 2001 Doel Reflecteren op het leren van algebra in een computeralgebra-omgeving, en in het bijzonder op het omgaan met variabelen

Nadere informatie

KERNASPECTEN VAN WISKUNDIG DENKEN

KERNASPECTEN VAN WISKUNDIG DENKEN KERNASPECTEN VAN WISKUNDIG DENKEN Paul Drijvers Over wiskundig denken wordt de laatste tijd veel gesproken. Maar waarom is dit het geval? En wat wordt ermee bedoeld, wat is de kern van wiskundig denken

Nadere informatie

Wiskundige denkactiviteiten

Wiskundige denkactiviteiten Wiskundige denkactiviteiten 1. Over leren en onderwijzen van wiskunde versie 2 AvS Met enkele steekwoorden kunnen we de doelen van ons wiskundeonderwijs karakteriseren: Weten dat: kennis van feiten en

Nadere informatie

Het Toetsen Tournée. Paul Drijvers Freudenthal Instituut Universiteit Utrecht

Het Toetsen Tournée. Paul Drijvers Freudenthal Instituut Universiteit Utrecht Het Toetsen Tournée Paul Drijvers Freudenthal Instituut Universiteit Utrecht www.fisme.science.uu.nl/ 2017-06-02 CET RVO TIMSS DTT LKT CE hv Opzet We bekijken een zestal nationale toetsen uit Nederland

Nadere informatie

Onderwijzen en toetsen van wiskundige denkactiviteiten

Onderwijzen en toetsen van wiskundige denkactiviteiten Onderwijzen en toetsen van wiskundige denkactiviteiten Implementatie examenprogramma s havo-vwo 2015 SLO nationaal expertisecentrum leerplanontwikkeling Onderwijzen en toetsen van wiskundige denkactiviteiten

Nadere informatie

Didactiek van Informatieverwerking en Statistiek voor leerlingen van 12-16?

Didactiek van Informatieverwerking en Statistiek voor leerlingen van 12-16? Didactiek van Informatieverwerking en Statistiek voor leerlingen van 12-16? Ontwikkeling van een module en boek voor de 2 e graads lerarenopleiding wiskunde. Informatieverwerking en Statistiek Gerard van

Nadere informatie

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814.

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. STAATSCOURANT Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. Nr. 7228 14 maart 2014 Regeling van de Staatssecretaris van Onderwijs, Cultuur en Wetenschap van 22 februari 2014, nr. VO/599178,

Nadere informatie

Hoofdstuk 2 : VLAKKE FIGUREN

Hoofdstuk 2 : VLAKKE FIGUREN 1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.

Nadere informatie

Toelichting bij de concretiseringen wiskunde in de vorm van tussendoelen voor 3 havo/vwo ctwo en SLO oktober 2010

Toelichting bij de concretiseringen wiskunde in de vorm van tussendoelen voor 3 havo/vwo ctwo en SLO oktober 2010 Toelichting bij de concretiseringen wiskunde in de vorm van tussendoelen voor 3 havo/vwo ctwo en SLO oktober 2010 Achtergrond De globale kerndoelen voor de onderbouw van het voortgezet onderwijs bieden

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Wiskundeonderwijs voor de 21 ste eeuw

Wiskundeonderwijs voor de 21 ste eeuw Wiskundeonderwijs voor de 21 ste eeuw Welke instructievormen passen daarbij? Kees Buys Bert Zwaneveld (Open Universiteit) Sonia Palha (Hogeschool Amsterdam) kbuys@dds.nl g.zwaneveld@uu.nl s.abrantes.garcez.palha@hva.nl

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen Wiskunde oefentoets hoofdstuk 0: Meetkundige berekeningen Iedere antwoord dient gemotiveerd te worden, anders worden er geen punten toegekend. Gebruik van grafische rekenmachine is toegestaan. Succes!

Nadere informatie

Ontwerponderzoek Paper 1: definitiefase

Ontwerponderzoek Paper 1: definitiefase Denkstappen maken bij het werken met vergelijkingen Ontwerponderzoek Paper 1: definitiefase Naam auteur Vakgebied Titel Onderwerp Opleiding Doelgroep Sleuteltermen Dickens van der Werff, ir Wiskunde Denkstappen

Nadere informatie

Rekenen en wiskunde ( bb kb gl/tl )

Rekenen en wiskunde ( bb kb gl/tl ) Tussendoelen Rekenen en wiskunde Rekenen en wiskunde ( bb kb gl/tl ) vmbo = Basis Inzicht en handelen Vaktaal wiskunde Vaktaal wiskunde gebruiken voor het ordenen van het eigen denken en voor uitleg aan

Nadere informatie

De 10 e editie havo-vwo OB

De 10 e editie havo-vwo OB De 10 e editie havo-vwo OB Presentatie havo/vwo onderbouw 10 e editie 1 HAVO/VWO 1 VWO 2 HAVO 2 HAVO/VWO 2 VWO De delen 10 e editie onderbouw 3 HAVO deel 1 3 HAVO deel 2 3 VWO deel 1 3 VWO deel 2 Presentatie

Nadere informatie

Domein A: Inzicht en handelen

Domein A: Inzicht en handelen Tussendoelen wiskunde onderbouw vo vmbo Preambule Domein A is een overkoepeld domein dat altijd in combinatie met de andere domeinen wordt toegepast (of getoetst). In domein A wordt benoemd: Vaktaal: het

Nadere informatie

najaar 2010 Bijeenkomst steunpunt taalenrekenenvo Freudenthal Instituut

najaar 2010 Bijeenkomst steunpunt taalenrekenenvo Freudenthal Instituut najaar 2010 Bijeenkomst steunpunt taalenrekenenvo Freudenthal Instituut Waarom? de aanleiding Wie gaat wat doen? wiskunde of schoolbreed Rol van de docent Wat ga je inzetten? materialen, ook ict Doelgroepen,

Nadere informatie

Analytische meetkunde. Les 4 Kwadratische vergelijkingen (Deze les sluit aan bij de paragraaf 3.1 van Analytische meetkunde van de Wageningse Methode)

Analytische meetkunde. Les 4 Kwadratische vergelijkingen (Deze les sluit aan bij de paragraaf 3.1 van Analytische meetkunde van de Wageningse Methode) Analytische meetkunde Les 4 Kwadratische vergelijkingen (Deze les sluit aan bij de paragraaf 3.1 van Analytische meetkunde van de Wageningse Methode) De vergelijking van een cirkel De cirkel heeft middelpunt

Nadere informatie

Tussendoelen wiskunde onderbouw vo vmbo

Tussendoelen wiskunde onderbouw vo vmbo Tussendoelen wiskunde onderbouw vo vmbo Domein A: Inzicht en handelen Subdomein A1: Vaktaal wiskunde 1. vmbo passende vaktaal voor wiskunde herkennen en gebruiken voor het ordenen van het eigen denken

Nadere informatie

7 a patroonnummer a patroonnummer a h = z

7 a patroonnummer a patroonnummer a h = z Hoofdstuk 3 FORMULES 3.1 PATRONEN EN FORMULES 3 a 10 22 c? d De beweringen a b = b a en a + b = b + a zijn juist. e 15 a 12 a 18 a f a + 8 10 + a a + 14 b zijde vierkant 3 4 5 6 7 aantal gekleurde hokjes

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B (pilot) Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 0 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor

Nadere informatie

DE METADENKENDE LEERLING TRAINING DEEL 1 16 JUNI 2015 IMPROVE-METHODE VOOR HET VERBETEREN VAN DE METACOGNITIE BIJ LEERLINGEN

DE METADENKENDE LEERLING TRAINING DEEL 1 16 JUNI 2015 IMPROVE-METHODE VOOR HET VERBETEREN VAN DE METACOGNITIE BIJ LEERLINGEN DE METADENKENDE LEERLING TRAINING DEEL 1 16 JUNI 2015 IMPROVE-METHODE VOOR HET VERBETEREN VAN DE METACOGNITIE BIJ LEERLINGEN Rodica Ernst-Militaru Udens College R.Ernst@udenscollege.nl Plonie Nijhof Hermann

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1

Vraag Antwoord Scores. 1 maximumscore 2 De staplengte is 1600 : 2754 1 De staplengte is 0,580 meter, dit is 58 (cm) (of 0,58 meter) 1 Eindexamen wiskunde vmbo gl/tl 00 - I Beoordelingsmodel Stappenteller maximumscore De staplengte is 600 : 754 De staplengte is 0,580 meter, dit is 58 (cm) ( 0,58 meter) Als het antwoord in meters gegeven

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3

Meten en Meetkunde 3. Doelgroep Meten en Meetkunde 3. Omschrijving Meten en Meetkunde 3 Meten en Meetkunde 3 Meten en Meetkunde 3 besteedt aandacht aan het onderhouden en uitbreiden van de basisvaardigheden van het rekenen met maten, oppervlaktes en inhouden, coördinaten en assenstelsels,

Nadere informatie

Het gaat niet om de verpakking, maar om wat er in zit!

Het gaat niet om de verpakking, maar om wat er in zit! Het gaat niet om de verpakking, maar om wat er in zit! U-talent opdracht Wiskunde Havo 3 (eventueel vwo 3) Inleiding Het verpakken en vervoeren van producten is een belangrijk onderwerp in de commerciële

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

Domein A: Vaardigheden

Domein A: Vaardigheden Examenprogramma Wiskunde A havo Het eindexamen bestaat uit het centraal examen en het schoolexamen. Het examenprogramma bestaat uit de volgende domeinen: Domein A Vaardigheden Domein B Algebra en tellen

Nadere informatie

REKENEN IN WILLEKEURIGE DRIEHOEKEN

REKENEN IN WILLEKEURIGE DRIEHOEKEN REKENEN IN WILLEKEURIGE DRIEHOEKEN Auteur: Wouter Veldhuiz, Almde College, Silvolde, W.Veldhuiz@almdecollege.nl Klas: VWO 4,5,6 Wiskunde-B HAVO 4, 5 Wiskunde-B Onderwerp: sinus- cosinusregel ontdekk toepass

Nadere informatie

Vragen stellen in de reken-wiskundeles

Vragen stellen in de reken-wiskundeles Vragen stellen in de reken-wiskundeles Marc van Zanten, nationaal expertisecentrum leerplanontwikkeling SLO & Universiteit Utrecht: Panama, O&T, Faculteit Sociale Wetenschappen Inleiding Dit hoofdstuk

Nadere informatie

Lijnen van betekenis meetkunde in 2hv

Lijnen van betekenis meetkunde in 2hv Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module

Nadere informatie

Eindexamen wiskunde B 1-2 vwo 2002-II

Eindexamen wiskunde B 1-2 vwo 2002-II Eindexamen wiskunde B 1-2 vwo 2002-II ppervlakte Gegeven is de functie f ( x) = x 1. De lijn k raakt aan de grafiek van f in het punt (10, 3). Zie figuur 1. figuur 1 y k 1 1 f x 5p 1 Stel met behulp van

Nadere informatie

Vandaag 11/22/11$ ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN. Moeilijk onderdeel van de leerstof

Vandaag 11/22/11$ ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN. Moeilijk onderdeel van de leerstof 2 3 ALS WE KIEZEN VOOR BEWIJZEN, LATEN WE DAN NIET TOVEREN ErasmushogeschoolBrussel Lerarenopleiding LSO anne.schatteman@ehb.be Vandaag 2 Moeilijk onderdeel van de leerstof 3 Bewijzen worden behandeld

Nadere informatie

Analyse rekenalgebraïsche. vaardigheden in de onderbouw van het havo/vwo. ReAL Leerlijnen van rekenen naar algebra

Analyse rekenalgebraïsche. vaardigheden in de onderbouw van het havo/vwo. ReAL Leerlijnen van rekenen naar algebra Analyse rekenalgebraïsche vaardigheden in de onderbouw van het havo/vwo. ReAL Leerlijnen van rekenen naar algebra SLO nationaal expertisecentrum voor leerplanontwikkeling Wiskunde in de onderbouw van het

Nadere informatie

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78 ICT Meetkunde met GeoGebra 2.7 deel 1 blz 78 Om de opdrachten van paragraaf 2.7 uit het leerboek te kunnen maken heb je het computerprogramma GeoGebra nodig. Je kunt het programma openen via de leerlingenkit

Nadere informatie

Gecijferdheid/Wiskunde Concepten, schoolspecifieke werkwijzen en methodieken

Gecijferdheid/Wiskunde Concepten, schoolspecifieke werkwijzen en methodieken Gecijferdheid/Wiskunde Concepten, schoolspecifieke werkwijzen en methodieken Gecijferdheid in leerjaar 1 en 2: Gereedschapsles In leerjaar 1 en 2 wordt bij gecijferdheid projectmatig gewerkt. Door het

Nadere informatie

Rekenen in het mbo (en vmbo) Monica Wijers en Vincent Jonker 19 januari 2011

Rekenen in het mbo (en vmbo) Monica Wijers en Vincent Jonker 19 januari 2011 Rekenen in het mbo (en vmbo) Monica Wijers en Vincent Jonker 19 januari 2011 Rekenen in het mbo (en vmbo) 1. Referen?ekader rekenen 2. Hoe ver is men in mbo? 3. Hoe ver is men in vmbo? 4. Drieslag func?oneel

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 1 woensdag 14 mei uur

Examen HAVO. wiskunde B. tijdvak 1 woensdag 14 mei uur Examen HAVO 014 tijdvak 1 woensdag 14 mei 1.0-1.0 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want ANALYTISCHE MEETKUNDE: HERHALING DERDE JAAR OEFENINGEN Lees eerst de formules op het andere blad, en los vervolgens de oefeningen van het bijbehorende deel op. Wanneer je alles hebt opgelost, maak je de

Nadere informatie

De Taxonomie van Bloom Toelichting

De Taxonomie van Bloom Toelichting De Taxonomie van Bloom Toelichting Een van de meest gebruikte manier om verschillende kennisniveaus in te delen, is op basis van de taxonomie van Bloom. Deze is tussen 1948 en 1956 ontwikkeld door de onderwijspsycholoog

Nadere informatie

OVER CIJFERS GESPROKEN...

OVER CIJFERS GESPROKEN... INLEIDING De bevorderingsnormen geven de ondergrens aan van de studieresultaten van de leerling om bevorderd te kunnen worden naar een hoger leerjaar in dezelfde opleiding. Als een leerling niet aan deze

Nadere informatie

Eindexamen havo wiskunde B pilot II

Eindexamen havo wiskunde B pilot II Eindexamen havo wiskunde B pilot 0 - II Het gewicht van een paard maximumscore 4 Een keuze van (bijvoorbeeld) een lengte van 0 (cm) voor het kleinste paard (en dus een lengte van 80 (cm) voor het grootste

Nadere informatie

Colofon. Dit is een uitgave van: Philips Human Resources Benelux / Jet-Net Gebouw VB-12 Postbus 80003 5600 JZ Eindhoven

Colofon. Dit is een uitgave van: Philips Human Resources Benelux / Jet-Net Gebouw VB-12 Postbus 80003 5600 JZ Eindhoven Straatverlichting, wat kost dat L 30 30 30 x x een wiskundeproject voor 4 havo/vwo Colofon Dit is een uitgave van: Philips Human Resources Benelux / Jet-Net Gebouw VB- Postbus 80003 600 JZ Eindhoven Uitgave:

Nadere informatie

Antwoordmodel - In de ruimte

Antwoordmodel - In de ruimte Antwoordmodel - In de ruimte Vraag 1 Welke ruimtefiguren (of delen van) herken je op de volgende foto s? a Foto 1. Balk, prisma, cilinder en kubus. b Foto 2. Cilinder, balk, kubus en prisma c Foto 3. Balk,

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 009 tijdvak woensdag 4 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Modulehandleiding. voorjaar 2017

Modulehandleiding. voorjaar 2017 Modulehandleiding Cursus Basisvaardigheden Wiskunde voorjaar 2017 Mei 2017 Anton Goos Inhoud: 1. Beginvereisten 2. Relatie met andere modules 3. Introductie 4. Leermiddelen 5. Werkvormen, studiebelasting,

Nadere informatie

Rakende cirkels. Oriëntatie. Keuzeopdracht voor wiskunde

Rakende cirkels. Oriëntatie. Keuzeopdracht voor wiskunde Rakende cirkels Keuzeopdracht voor wiskunde Verrijkende opdracht over construeren en redeneren in figuren Voorkennis: meetkunde: cirkels, raaklijn, loodrecht stand; sinus: waarden voor bekende hoeken als

Nadere informatie

1 Introductie. 2 Oppervlakteformules

1 Introductie. 2 Oppervlakteformules Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2002-II

Eindexamen wiskunde B1-2 vwo 2002-II ppervlakte Gegeven is de functie f ( x) x. De lijn k raakt aan de grafiek van f in het punt (0, 3). Zie figuur. figuur y k f x 5p Stel met behulp van differentiëren een vergelijking op van k. De grafiek

Nadere informatie

Rekenen bij Moderne Wiskunde

Rekenen bij Moderne Wiskunde Moderne Wiskunde Rekenen: een volledig doorlopende leerlijn rekenen voor alle leerjaren en alle niveaus! Rekenen bij Moderne Wiskunde 1 Verplichte rekentoets Vanaf schooljaar 2013/2014 Voor alle leerlingen

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur

Examen VWO. wiskunde B (pilot) tijdvak 1 woensdag 18 mei uur Eamen VW 016 tijdvak 1 woensdag 18 mei 13.30-16.30 uur wiskunde (pilot) it eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 79 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Vernieuwing examen programma s wiskunde havo/vwo

Vernieuwing examen programma s wiskunde havo/vwo Vernieuwing examen programma s wiskunde havo/vwo Brochure voor schoolleiders, sectieleiders en docenten wiskunde november 2014 Voor de wiskundevakken op havo en vwo worden nieuwe examenprogramma s ingevoerd.

Nadere informatie

3 + 3 + 6 = 3 + 3 + 3 + 3.

3 + 3 + 6 = 3 + 3 + 3 + 3. 1. Als je vervangt door 3 in de uitdrukking + + 6 = + + +, dan verkrijg je: 3 + 3 + 6 = 3 + 3 + 3 + 3. Kangoeroewedstrijd editie Wallabie: jaargang 2010, probleem 1. c Vlaamse Wiskunde Olympiade v.z.w.

Nadere informatie

Zeepvliezen PO. door M. van den Bosch- Knip Meetkunde Presentatie WiskundeCongres

Zeepvliezen PO. door M. van den Bosch- Knip Meetkunde Presentatie WiskundeCongres Zeepvliezen PO door M. van den Bosch- Knip mirjamvdbk@gmail.com Meetkunde Presentatie 16-11-2016 WiskundeCongres Uw spreker Ir Mirjam van den Bosch- Knip RBA MSc MSc TU Twente: Chemische Technologie Rabobank:

Nadere informatie

Antwoordmodel - Kwadraten en wortels

Antwoordmodel - Kwadraten en wortels Antwoordmodel - Kwadraten en wortels Schrijf je antwoorden zo volledig mogelijk op. Tenzij anders aangegeven mag je je rekenmachine niet gebruiken. Sommige vragen zijn alleen voor het vwo, dit staat aangegeven.

Nadere informatie

Wiskundig denken in de pilotexamens van de nieuwe wiskundecurricula havo/vwo

Wiskundig denken in de pilotexamens van de nieuwe wiskundecurricula havo/vwo Wiskundig denken in de pilotexamens van de nieuwe wiskundecurricula havo/vwo Master thesis, juli 205 Hanneke Kodde-Buitenhuis Studentnummer: 3484793 Freudenthal instituut, Universiteit Utrecht Cito, Arnhem

Nadere informatie

REKENEN WORDT WISKUNDE

REKENEN WORDT WISKUNDE REKENEN WORDT WISKUNDE Tine Wijnants Actieonderzoek Bachelor Secundair Onderwijs, KHLim Waarom haken sommige leerlingen af tijdens de lessen wiskunde? Wat maakt het Secundair Onderwijs zo anders dan het

Nadere informatie

Wiskunde en informatica: innovatie en consolidatie Over vragen in het wiskunde- en informaticaonderwijs

Wiskunde en informatica: innovatie en consolidatie Over vragen in het wiskunde- en informaticaonderwijs Tijdschrift voor Didactiek der β-wetenschappen 22 (2005) nr. 1 & 2 53 Oratie, uitgesproken op 11 maart 2005, bij de aanvaarding van het ambt van hoogleraar Professionalisering in het bijzonder in het onderwijs

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Examen HAVO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit examen

Nadere informatie

2. Examenvraag (3,6p)

2. Examenvraag (3,6p) RUDOLF STEINERCOLLEGE HAARLEM WISKUNDE HAVO NG/NT KLAS 12 UITWERKING Voor elk onderdeel is aangegeven hoeveel punten kunnen worden behaald. Antwoorden moeten altijd zijn voorzien van een berekening, toelichting

Nadere informatie

WISKUNDE VMBO TL/GL VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0

WISKUNDE VMBO TL/GL VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 WISKUNDE VMBO TL/GL VAKINFORMATIE STAATSEXAMEN 2016 V15.7.0 De vakinformatie in dit document is vastgesteld door het College voor Toetsen en Examens (CvTE). Het CvTE is verantwoordelijk voor de afname

Nadere informatie

T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r

T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r T o e t s p r o g r a m m a w i s k u n d e e e r s t e f a s e s c h o o l j a a r 0 7-0 8 AFDELING EN LEERJAAR: B T/H 07 08 Aantal proefwerken: 8 (+ 3 in toetsweken) Aantal werkstukken: 0 of I Proefwerk

Nadere informatie

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814.

Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. STAATSCOURANT Officiële uitgave van het Koninkrijk der Nederlanden sinds 1814. Nr. 30735 6 november 2013 Regeling van de Staatssecretaris van Onderwijs, Cultuur en Wetenschap van 28 oktober 2013, nr. VO/541608,

Nadere informatie

Workshop voorbereiden Authentieke instructiemodel

Workshop voorbereiden Authentieke instructiemodel Workshop voorbereiden Authentieke instructiemodel Workshop voorbereiden Uitleg Start De workshop start met een echte, herkenbare en uitdagende situatie. (v.b. het is een probleem, een prestatie, het heeft

Nadere informatie

Tussendoelen in MathPlus

Tussendoelen in MathPlus MALMBERG UITGEVERIJ B.V. Tussendoelen in MathPlus Versie 1 Inhoud Tussendoelen onderbouw in MathPlus... 2 Tabel tussendoelen... 2 1HVG... 7 Domein Rekenen... 7 Domein Meten en tekenen... 9 Domein Grafieken

Nadere informatie

Whitepaper Getal & Ruimte 12 e editie havo/vwo onderbouw

Whitepaper Getal & Ruimte 12 e editie havo/vwo onderbouw Whitepaper Getal & Ruimte 12 e editie havo/vwo onderbouw WHITEPAPER GETAL & RUIMTE Getal & Ruimte is de grootste wiskundemethode in het voortgezet onderwijs. Met een heldere didactische structuur en een

Nadere informatie

training rekenspecialist Amarantis Bijeenkomst 1, 10 april 2012 Monica Wijers Freudenthal Instituut

training rekenspecialist Amarantis Bijeenkomst 1, 10 april 2012 Monica Wijers Freudenthal Instituut training rekenspecialist Amarantis Bijeenkomst 1, 10 april 2012 Monica Wijers Freudenthal Instituut Rekenen als voorafje Rekenen sommen 1 Rekenen sommen 2 Welke weet u meteen? 12 x 12 412 + 99 Rekenen

Nadere informatie

Eindexamen vwo wiskunde B pilot 2014-I

Eindexamen vwo wiskunde B pilot 2014-I Eindeamen vwo wiskunde B pilot 04-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 2 woensdag 24 juni uur

Examen VWO. wiskunde B1. tijdvak 2 woensdag 24 juni uur Examen VWO 2009 tijdvak 2 woensdag 24 juni 3.30-6.30 uur wiskunde B Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk vraagnummer staat hoeveel punten met een

Nadere informatie

Voorbeeldexamen Wiskunde B Havo

Voorbeeldexamen Wiskunde B Havo Voorbeeldexamen Wiskunde B Havo Datum: Tijd: 13:00-16:00 Aantal opgaven: 6 Aantal subvragen: 18 Totaal aantal punten: 67 ) Zet uw naam op alle blaadjes die u inlevert. ) Laat bij iedere opgave door middel

Nadere informatie

Ontwerpen van wiskundige denkactiviteiten onderbouw havo/vwo

Ontwerpen van wiskundige denkactiviteiten onderbouw havo/vwo Ontwerpen van wiskundige denkactiviteiten onderbouw havo/vwo Implementatie examenprogamma havo/vwo 015 SLO nationaal expertisecentrum leerplanontwikkeling Ontwerpen van wiskundige denkactiviteiten onderbouw

Nadere informatie

Vernieuwing examen programma s wiskunde havo/vwo

Vernieuwing examen programma s wiskunde havo/vwo Vernieuwing examen programma s wiskunde havo/vwo Brochure voor schoolleiders, sectieleiders en docenten wiskunde juni 2014 Voor de wiskundevakken op havo en vwo worden nieuwe examenprogramma s ingevoerd.

Nadere informatie

HET 6E-MODEL EN HET HOOFDSTUK OPPERVLAKTE Hoe kun je leerlingen zelf de leerstof laten ontdekken? Ward Perenboom

HET 6E-MODEL EN HET HOOFDSTUK OPPERVLAKTE Hoe kun je leerlingen zelf de leerstof laten ontdekken? Ward Perenboom HET 6E-MODEL EN HET HOOFDSTUK OPPERVLAKTE Hoe kun je leerlingen zelf de leerstof laten ontdekken? Ward Perenboom Inhoud Mijn onderzoek Aanleiding Het 6E-model (Windels, 2012) Mijn eigen ontwerp oppervlakte

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 1 donderdag 22 mei 13.30-15.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 25 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

ONDERZOEK DOEN. HENK LINDEMAN h.lindeman@aps.nl. Naam Datum

ONDERZOEK DOEN. HENK LINDEMAN h.lindeman@aps.nl. Naam Datum ONDERZOEK DOEN HENK LINDEMAN h.lindeman@aps.nl Naam Datum Onderzoeksvragen; uw keuze voor deze workshop Wat zijn de verschillen en overeenkomsten tussen onderzoek doen en gedocumenteerd schrijven? Welke

Nadere informatie

Whitepaper Moderne Wiskunde 12 e editie onderbouw

Whitepaper Moderne Wiskunde 12 e editie onderbouw Whitepaper Moderne Wiskunde 12 e editie onderbouw WHITEPAPER MODERNE WISKUNDE Moderne Wiskunde is een methode waarin inzicht, structuur en vernieuwing centraal staan. Moderne Wiskunde volgt een didactiek

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2008-II

Eindexamen wiskunde B1-2 vwo 2008-II Eindeamen wiskunde B- vwo 8-II Een zwaartepunt Van een cirkelschijf met middelpunt (, ) en straal is het kwart getekend dat in het eerste kwadrant ligt. De cirkelboog is de grafiek van de functie f die

Nadere informatie

Correctievoorschrift HAVO. Wiskunde B1,2. Hoger Algemeen Voortgezet Onderwijs. Tijdvak CV24 Begin

Correctievoorschrift HAVO. Wiskunde B1,2. Hoger Algemeen Voortgezet Onderwijs. Tijdvak CV24 Begin Wiskunde B, Correctievoorschrift HAVO Hoger Algemeen Voortgezet Onderwijs 0 00 Tijdvak 00004 CV4 Begin Regels voor de beoordeling Het werk van de kandidaten wordt beoordeeld met inachtneming van de artikelen

Nadere informatie

Analytische en andere soorten meetkunde van Mavo tot Maple. Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft.

Analytische en andere soorten meetkunde van Mavo tot Maple. Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft. Analytische en andere soorten meetkunde van Mavo tot Maple Utrecht, 9 januari 2016 Wintersymposium KWG Jeroen Spandaw j.g.spandaw@tudelft.nl Puzzel mavo 3 Puzzel mavo 3 Puzzel mavo 3 Veronderstel: zijde

Nadere informatie

Voor een betrouwbaar bovenbouwadvies per vak

Voor een betrouwbaar bovenbouwadvies per vak Voor een betrouwbaar bovenbouwadvies per vak Beschikbaar per 1 september 2015 NIEUW TOA Profielkeuzetoets vmbo en havo Biologie, economie, natuurkunde en wiskunde Bureau ICE De nieuwe generatie toetsen

Nadere informatie

1 Middelpunten. Verkennen. Uitleg

1 Middelpunten. Verkennen. Uitleg 1 Middelpunten Verkennen Middelpunten Inleiding Verkennen Probeer vanuit drie gegeven punten (niet op één lijn) die op een cirkel moeten liggen het middelpunt van die cirkel te construeren. Je kunt hem

Nadere informatie

Draai maar in het rond!

Draai maar in het rond! Draai maar in het rond! Bedoeling: Dit is een activiteit dat je kan gebruiken om de leerlingen te laten oefenen om cirkels te tekenen met een passer. Dit is dus een verwerkingsactiviteit na de werkboekoefeningen.

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 maandag 15 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 017 tijdvak 1 maandag 15 mei 13:30-16:30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 14 vragen. Voor dit examen zijn maximaal 69 punten te behalen. Voor elk

Nadere informatie

Kaas. foto 1 figuur 1. geheel aantal cm 2.

Kaas. foto 1 figuur 1. geheel aantal cm 2. Kaas Op foto 1 zie je drie stukken kaas. Het zijn delen van een hele, ronde kaas. Het grootste stuk is precies de helft van een hele kaas. Deze halve kaas heeft een vlakke zijkant. De vorm van de vlakke

Nadere informatie

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening

vwo A deel 4 13 Mathematische statistiek 14 Algebraïsche vaardigheden 15 Toetsen van hypothesen 16 Toepassingen van de differentiaalrekening vwo A deel 4 13 Mathematische statistiek 13.1 Kansberekeningen 13.2 Kansmodellen 13.3 De normale verdeling 13.4 De n -wet 13.5 Discrete en continue verdelingen 13.6 Diagnostische toets 14 Algebraïsche

Nadere informatie