5,9. Werkstuk door een scholier 2145 woorden 30 maart keer beoordeeld. Natuurkunde. Hoofdstuk 1. Elektriciteit

Maat: px
Weergave met pagina beginnen:

Download "5,9. Werkstuk door een scholier 2145 woorden 30 maart keer beoordeeld. Natuurkunde. Hoofdstuk 1. Elektriciteit"

Transcriptie

1 Werkstuk door een scholier 2145 woorden 30 maart ,9 604 keer beoordeeld Vak Natuurkunde Hoofdstuk 1. Elektriciteit Elektriciteit Lang, heel lang geleden deed je een kaarsje aan als het 's avonds donker werd. Tegenwoordig kun je op een knopje drukken en de lamp floept vanzelf aan. In elk huis zitten stopcontacten. Daaruit haal je de elektriciteit voor lampen en voor allerlei elektrische apparaten. Eigenschappen van elektriciteit: Met elektriciteit kun je kracht uitoefenen. Een paar eigenschappen zijn: Licht: Elektriciteit gebruiken we om licht te maken. In het theater en op het voetbalveld worden hele grote lampen, met een groot vermogen, gebruikt. Warmte: Vroeger deed men hete kolen in een strijkbout. Nu stop je de stekker in het stopcontact en de strijkbout wordt heet. In een broodrooster of in een wasmachine zit een elektrische verwarming. Geluid: Een radio en een walkman werken op elektriciteit. Er bestaan ook elektrische muziekinstrumenten zoals: een keyboard of een elektrische gitaar. Met elektriciteit kun je ook geluid versterken. Wat is elektriciteit? Dat is een energievorm die ontstaat door de beweging van elektronen. Met elektriciteitkan je vele dingen je kan er veel dingen mee doen. Je kan ermee apparaten mee laten bewegen en laten spreken je kan ze licht laten geven ze kunnen je warmte geven maar ook kou. Je kan heel erg veel mee. De eerste mensen die dat onderzochten zijn: Thales van milete leefde rond 2500 v.c Hij ontdekte als je amber tegen een doek op wreef dat je doek dan statisch geladen werd en lichte dingen aantrok zoals haren,veren. Het woord elektriciteit komt van elektron wat Grieks is voor amber. Benjamin Franklin leefde rond 1750 Hij ontdekte als je met onweer ging vliegeren dat je dan de bliksem aantrok. Luigi Galvani en Alessandro volta leefde rond eind 18e eeuw Pagina 1 van 6

2 Zij ontdekte hoe je elektrische tijd kon opwekken. En zij waren de eerste die elektriciteit in een batterij stopten Hoofdstuk 2. het licht en Edison Het elektrisch licht is in 1811 uitgevonden. Sir Humphrey Davy ontdekte dat een elektrische boog tussen 2 polen (+ en -) licht gaf. Pas in 1841 werd het eerste elektrische licht in gebruik genomen. Deze eerste lampen waren te snel stuk en gaven veel te veel licht om in huis te gebruiken. Om Licht te kunnen maken zijn het juiste filament (geleider) in de juiste doos (de glazen bol) zonder zuurstof nodig. Zuurstof zorgt ervoor dat de geleider in brand vliegt. Edison besloot een filament van koolstof te gebruiken. Toen hij daarna spanning op de draad zette, gaf deze een zacht oranje schijnsel. Vijftien uur later brandde het filament door. Aan het eind van 1880 maakte Edison een lamp van 16 Watt die het 1500 uur uithield. Het elektrisch licht zoals we dat nu kennen werd eigenlijk tegelijk (in 1879) door 2 mensen uitgevonden: Thomas Alva Edison in de Verenigde Staten ensir Joseph Wilson Swan in Engeland. Swan was eigenlijk de eerste die een gloeilamp maakte met een glazen bol. Het probleem was altijd om een vacuüm te krijgen en dat dan zo te houden. Edison was de eerste die de lamp van Swan geschikt maakte om thuis te gebruiken. Zijn lamp bestond uit een vacuüm in een glazen bol met daarin een platina filament. Deze lamp kon maar enkele uren branden. Het licht van nu. Tegenwoordig is er overal wel licht alleen de schakelaar omschakelen en je hebt al weer licht. Tegenwoordig is licht vanzelfsprekend. Vroeger was dat niet zo. Vroeger deed je een kaars aan als het donker werd. Kaarsen waren vroeger dus veel van toepassing. Hoofdstuk 3. energiecentrales Stoom Gas, kolen en kernenergie worden gebruikt om water te laten koken. De stoom die ontstaat wil met grote snelheid ontsnappen. Die ontsnappende stoom laat een wiel draaien en aan dat wiel zit de generator. In de generator draait een spoel in een magneet.meestal noemen we de centrale naar de manier waarop die het water laat koken. Bijvoorbeeld een centrale die kolen gebruikt om het water te laten koken, heet een kolencentrale. Water Vlak over de grens, in Duitsland bij Eupen, heb je een groot meer. Dat meer is ontstaan nadat men een enorme dam had gebouwd in de rivier. Zo'n dam heet een "stuwdam" en het meer heet een "stuwmeer". Door het water uit het meer langs een wiel te laten stromen gaat, net als bij stoom, het wiel draaien. De generator die aan dat wiel zit maakt elektriciteit. Pagina 2 van 6

3 Zon Na de tweede wereldoorlog waren geleerden bezig met experimenten. Ze ontdekten dat als ergens licht op viel de hoeveelheid stroom veranderde. Ze ontdekten ook dat als er helemaal geen stroom liep, er toch stroom ging lopen zodra er licht op viel. Ze hadden een zonnecel ontdekt. Hoe meer licht, hoe meer stroom er gaat lopen. Je kent zonnecellen wel van rekenmachientjes en sommige horloges. Ook bekend zijn de zonnecellen uit de ruimtevaart. Windmolens In landen met veel wind laten windmolens generatoren draaien. Overal in ons land staan grotere en kleinere windmolens. Niet de oude houten of stenen molens, maar hoge masten met metalen wieken en een klein kastje waarin de generator zit. Benzine- en dieselmotoren Tenslotte worden er nog benzine- en dieselmotoren gebruikt om elektriciteit te maken. Dat zijn net zulke motoren als in een auto. Zo'n motor met dynamo wordt ook generator genoemd. Generatoren worden overal gebruikt waar geen stopcontact in de buurt is. Bijvoorbeeld om met een elektrische heggenschaar een heg te knippen of om in een haven met een elektrische boormachine een steiger te repareren. Verbruik Per persoon in Amerika per jaar is 34 miljoen KL. Maar in chili maar zo`n 4 miljoen. In China maar 2,5 kl. Het verschilt heel erg dus per land. Hoofdstuk 4. gelijkstroom, wisselstroom,stroomkring, elektronen Elektrische stroomkring Een elektrische stroomkring of circuit is te vergelijken met het circuit van de centrale verwarming thuis. In de tekening is de pomp de stroombron.is, precies wat de naam zegt, een van richting wisselende stroom. Dit is Wissel- / gelijkstroom Wisselstroom voor te stellen door een heen- en weer bewegende zuiger binnen een met water gevulde cilinder. Als de zuiger wordt aangedreven, zorgt hij binnen de cilinder voor een heen- en weergaande waterstroom in de buizen.als je deze beweging gaat tekenen (in een grafiek) wordt de wisselstroom weergegeven als een golfbeweging. De wisselstroomdynamo Het ronddraaien van de dynamo geeft afwisselend een stroompje in de ene en in de andere richting. Er is dan sprake van wisselstroom. Als de koperdraadwindingen wisselend worden aangesloten op de uitgangsklemmen dan zal de stroom steeds in dezelfde richting lopen. In de dynamo ontstaat dus een wisselstroom. Gelijkstroom Gelijkstroom is net als wisselstroom voor te stellen als een 'waterstroom'. Gelijkstroom kun je je dan voorstellen als een stroom die steeds dezelfde kant opgaat. Pagina 3 van 6

4 De spoelen van de rotor draaien tussen de beide magneetpolen. Dat gebeurt ook in de spoelen van de ronddraaiende rotor. Maar op het moment dat de stroom van richting wil gaan veranderen, verandert ook de aansluiting van de sleepcontacten aan de spoel. Daardoor blijft de stroom steeds dezelfde richting op gaan. Van een wisselstroom een gelijkstroom maken (gelijkrichting). Het gelijkrichten gaat met diodes. Wat is een elektron? Een elektron is een klein negatief elektrisch geladen deeltje dat draait om een positief geladen kern. Aan de hand van het model van een waterstofatoom wordt dit duidelijk. Om de kern, die positief geladen is, cirkelt één negatief geladen elektron. Waarom kan er stroom lopen door bijv. ijzer? De 'buitenste' elektronen zitten een beetje 'losser'. Dit kan als volgt worden voorgesteld: de '+' lading trekt de '-' lading aan, waardoor deze om de kern blijft draaien. Denk aan het rondslingeren van een steentje aan een touw, maar als je het touw los laat vliegt het steentje weg. Een ander vangt het touw en geeft ook een slinger, enz. Hoofdstuk 5. watt, volt, ampere, Ohm Watt. Op lampen, batterijen en elektrische apparaten zie je altijd getallen en vreemde woorden staan. Volt, ampere, watt en soms ohm. Het zijn namen van mensen. Mensen die onderzoek hebben gedaan naar elektriciteit. Ze hebben zoveel ontdekt dat hun ontdekkingen naar hen genoemd zijn. Als er meer stroom gaat lopen noemen we dat ook wel dat er meer vermogen verbruikt wordt.vermogen wordt gemeten in het aantal watt. Dat staat wel op een lamp of apparaat. Een lamp van honderd watt geeft meer licht dan een lamp van zestig watt.door de honderd watt lamp loopt dus meer stroom.ook een stofzuiger met een vermogen van 1000 watt gebruikt meer stroom dan een van 650 watt. Die van 1000 watt zuigt dan ook beter. Volt Als er wel elektriciteit is, maar nog geen stroomkring, bijvoorbeeld in een stopcontact, dan zeggen we dat er spanning op staat. De hoeveelheid spanning drukken we uit in het aantal Volt. In Nederland is dat altijd 220 volt geweest. Sinds een jaar is dat 230 Volt. Dit is veranderd om binnen Europa een gelijke spanning te krijgen. Allerlei elektrische apparaten en lampen zijn geschikt gemaakt voor 230 volt. Dat staat altijd op de buitenkant. Er zijn ook apparaten die op een lagere spanning werken, op een batterij bijvoorbeeld. Een walkman werkt op 6 volt. Er moeten 4 batterijen van 1,5 volt in. Een lamp die geschikt is voor 230 volt brandt niet op de 4 batterijen van de walkman. Die geven te weinig spanning. De walkman werkt ook niet op 230 volt. Dan is er teveel spanning en gaat de walkman kapot. Ampere We maken een stroomkring met een gloeilamp en er gaat stroom lopen. De hoeveelheid stroom die gaat lopen noemen we ampere. Bij de lamp gaat er 1/4 ampere stroom lopen. Een wasmachine heeft veel meer Pagina 4 van 6

5 stroom nodig. Soms wel 10 ampere. Ohm De lamp en de wasmachine geven een bepaalde weerstand, anders zou er kortsluiting ontstaan. De hoeveelheid weerstand drukken we uit in het aantal ohm. Die staat meestal niet op de lamp of het apparaat. Hoe minder weerstand, hoe meer stroom er gaat lopen. Hoofdstuk 6. 4 manieren om stroom op te wekken Er zijn 4 manieren om stroom op te wekken namelijk: Door scheikundige werking Door warmte Door licht Met behulp van een magneet 1.Eerst zullen we het gaan hebben over de scheikundige opwekking: Als we 2 metalen platen van een verschillend metaal een zuur of een zoute oplossing doen. Dan ontstaat er een scheikundige reactie waardoor er een spanning opgewekt wordt. Dit wordt ook wel galvanisch element genoemd. Dit werd in 1780 waargenomen door Galvani. En dat heeft geleid tot het gebruik van dit soort spanningsbronnen. 2.Elektrische spanning door stroom: Als we het laspunt van 2 verschillende draden van verschillend metaal op een plaats verwarmen, dan zullen de elektronen naar een kant worden geduwd. En zal er een lage gelijkspanning ontstaan. Als de temperatuur hoger wordt zal de spanning dus ook hoger worden. Als er een element is dat door warmte elektriciteit opgewekt wordt dan noemen we dit element een: thermo -element. 3.Toepassing zijn bijvoorbeeld: Het meten van hoge temperaturen in ovens. Als waakvlambeveiliging in cv ketels of gaskachels Elektrische spanning door licht: Als bijvoorbeeld een kleine hoeveelheid silicium wordt getroffen door lichtstralen,dan zullen de elektronen die in het silicium zitten naar het belichte oppervlak gaan. Hierdoor ontstaat gelijkspanning. De spanning die hier maximaal bij vrij kan komen is 0,4 volt.voor het opwekken van zonnen energie zijn deze echter niet geschikt, hiervoor gebruikt men andere. Namelijk cadmiumsulfide -cellen. 4.Elektrische spanning met behulp van een magneet: Als we een staaf magneet bewegen in een draadspoel,dan wordt er in de spoel een spanning opgewekt. Als we dit doen dan is de richting van de spanning andersom dan als deze uit de spoel getrokken wordt. Pagina 5 van 6

6 Als we de magneet stil houden in de draadspoel dan is er geen spanning. Als we de magneet in de spoel steeds heen en weer bewegen ontstaat er een spanning die steeds van richting veranderd. Dit noemen we een wisselspanning. Hoofdstuk 7. geschiedenis van elektriciteit Geschiedenis: De eerste keer dat een elektrisch verschijnsel opgemerkt werd was met barnsteen: als men over barnsteen wrijft worden hierdoor lichte voorwerpen aangetrokken. Dit verschijnsel was al ca 600 v.c al bekend. Thales van milete Hij ontdekte als je amber tegen een doek op wreef dat je doek dan statisch geladen werd en lichte dingen aantrok zoals haren,veren. Het woord elektriciteit komt van elektron wat Grieks is voor amber. Geronimo Cardano ontdekte in1551 voor het eerst het verschil tussen barnsteen en magnetisme. In het jaar ca toonde William Gilbert aan dat ook bij andere stoffen krachten waren deze was echter analoog aan het barnsteen. Dus noemde hij het elektrische kracht. Deze stoffen verdeelde hij in 2 hoofdgroepen namelijk: isolerende geleidende stoffen. In 1733 veronderstelde de Fransman Dufay het bestaan van 2 soorten elektriciteit, met als regel gelijksoortige elektriciteit stoot elkaar af, ongelijksoortige trekt elkaar aan. even Later onderscheidde Benjamin Franklin deze als positieve en negatieve elektriciteit. Benjamin Franklin leefde rond 1750 Hij ontdekte als je met onweer ging vliegeren dat je dan de bliksem aantrok. Luigi Galvani en Alessandro volta leefde rond eind 18e eeuw Zij ontdekte hoe je elektrische tijd kon opwekken. En zij waren de eerste die elektriciteit in een batterij stopten De eerst bruikbare toepassing van elektriciteit was in het jaar 1844 hier werd de eerste telegraaflijn tussen Washington en Baltinore aangelegd.deze telegraaflijn was uitgevonden door Morse. 40 jaar later werd pas voor het eerst de eerste elektriciteit centrale gebouwd. In dit jaartal werd tevens voor het eerst gebruik gemaakt van verlichting door elektriciteit. Pagina 6 van 6

Om een lampje te laten branden moet je er een elektrische stroom door laten lopen. Dat lukt alleen, als je een gesloten stroomkring maakt.

Om een lampje te laten branden moet je er een elektrische stroom door laten lopen. Dat lukt alleen, als je een gesloten stroomkring maakt. Samenvatting door een scholier 983 woorden 8 april 2011 6,8 988 keer beoordeeld Vak Methode NaSk Nova Natuurkunde H5 par 1 t/m 5 samenvatting Par. 1 Een stroomkring maken Om een lampje te laten branden

Nadere informatie

Samenvatting NaSk H5 Elektriciteit

Samenvatting NaSk H5 Elektriciteit Samenvatting NaSk H5 Elektriciteit Samenvatting door T. 865 woorden 6 november 2016 6,7 23 keer beoordeeld Vak Methode NaSk Nova Par. 1 Een stroomkring maken Om een lampje te laten branden moet je er een

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 2 (elektriciteit)

Samenvatting Natuurkunde Hoofdstuk 2 (elektriciteit) Samenvatting Natuurkunde Hoofdstuk 2 (elektriciteit) Samenvatting door een scholier 1671 woorden 2 december 2012 5,6 55 keer beoordeeld Vak Methode Natuurkunde Natuurkunde overal Natuurkunde H2 elektriciteit

Nadere informatie

2 Elektriciteit Elektriciteit. 1 A De aal heeft ca 4000 elektrische cellen van 0,15 volt, die in serie geschakeld zijn.

2 Elektriciteit Elektriciteit. 1 A De aal heeft ca 4000 elektrische cellen van 0,15 volt, die in serie geschakeld zijn. 2 Elektriciteit 1 2.1 Elektriciteit 1 A De aal heeft ca 4000 elektrische cellen van 0,15 volt, die in serie geschakeld zijn. 2 mp3-speler dynamo fiets accu lamp op je kamer stopcontact auto batterij 3

Nadere informatie

Energie : elektriciteit : stroomkringen

Energie : elektriciteit : stroomkringen Energie : elektriciteit : stroomkringen De netspanning is uitgevallen! Pas dan merk je wat elektriciteit voor ons betekent. Geen licht, geen computer, geen playstation, het eten op het elektrisch fornuis

Nadere informatie

Vrij Technisch Instituut Grote Hulststraat Tielt tel fax

Vrij Technisch Instituut Grote Hulststraat Tielt tel fax De elektrische installatie in een woning heeft heel wat elektrische circuits. Een elektrisch circuit of een elektrische stroomkring is opgebouwd uit een stroombron, een verbruiker, een schakelaar en geleiders.

Nadere informatie

Werkstuk Natuurkunde Elektriciteit

Werkstuk Natuurkunde Elektriciteit Werkstuk Natuurkunde Elektriciteit Werkstuk door een scholier 1442 woorden 23 maart 2006 5,8 154 keer beoordeeld Vak Natuurkunde Inleiding Wat gebeurt er als er in Nederland de stroom uit valt? Dat is

Nadere informatie

Elektriciteit. Elektriciteit

Elektriciteit. Elektriciteit Elektriciteit Alles wat we kunnen zien en alles wat we niet kunnen zien bestaat uit kleine deeltjes. Zo is een blok staal gemaakt van staaldeeltjes, bestaat water uit waterdeeltjes en hout uit houtdeeltjes.

Nadere informatie

Werkstuk elektriciteit Mees Kleefmann Groep 7a Oktober 2010. Elektriciteit

Werkstuk elektriciteit Mees Kleefmann Groep 7a Oktober 2010. Elektriciteit Werkstuk elektriciteit Mees Kleefmann Groep 7a Oktober 2010 Elektriciteit Inhoudsopgave 1 - Wat is elektriciteit? 2 - Statische elektriciteit 3 - Stromende elektriciteit maken met een dynamo 4 - Elektriciteit

Nadere informatie

Geleider: (metaal) hierin kunnen elektronen bewegen, omdat de buitenste elektronen maar zwak aangetrokken worden tot de kern (vrije elektronen)

Geleider: (metaal) hierin kunnen elektronen bewegen, omdat de buitenste elektronen maar zwak aangetrokken worden tot de kern (vrije elektronen) Boekverslag door B. 1240 woorden 16 juni 2015 7.6 10 keer beoordeeld Vak Methode Natuurkunde Pulsar Hoofdstuk 3, Elektriciteit 1 1 Lading en stroom Elektrische lading kan positief of negatief zijn. Gelijke

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 4

Samenvatting Natuurkunde Hoofdstuk 4 Samenvatting Natuurkunde Hoofdstuk 4 Samenvatting door Roy 1370 woorden 5 maart 2017 6,8 14 keer beoordeeld Vak Methode Natuurkunde Nova Samenvatting h4 NaSk1 4.1 Elke keer dat je een apparaat aanzet,

Nadere informatie

Elektriciteit. Wat is elektriciteit

Elektriciteit. Wat is elektriciteit Elektriciteit Wat is elektriciteit Elektriciteit kun je niet zien, niet ruiken, niet proeven, maar wel voelen. Dit voelen kan echter gevaarlijk zijn dus pas hier voor op. Maar wat is het dan wel? Hiervoor

Nadere informatie

Alles om je heen is opgebouwd uit atomen. En elk atoom is weer bestaat uit protonen, elektronen en neutronen.

Alles om je heen is opgebouwd uit atomen. En elk atoom is weer bestaat uit protonen, elektronen en neutronen. 2 ELEKTRICITEITSLEER 2.1. Inleiding Je hebt al geleerd dat elektriciteit kan worden opgewekt door allerlei energievormen om te zetten in elektrische energie. Maar hoe kan elektriciteit ontstaan? En waarom

Nadere informatie

Windmolenpark Houten. Project nask & techniek Leerjaar 2 havo/atheneum College de Heemlanden, Houten. Namen: Klas:

Windmolenpark Houten. Project nask & techniek Leerjaar 2 havo/atheneum College de Heemlanden, Houten. Namen: Klas: Namen: Klas: Windmolenpark Houten Project nask & techniek Leerjaar 2 havo/atheneum College de Heemlanden, Houten Ontwikkeld door: Geert Veenstra Gerard Visker Inhoud Probleem en hoofdopdracht Blz 3 Samenwerking

Nadere informatie

Een batterij is een spanningsbron die chemische energie omzet in elektrische (zie paragraaf 3).

Een batterij is een spanningsbron die chemische energie omzet in elektrische (zie paragraaf 3). 5. Opwekken van spanning: Spanningsbronnen Om een lamp te laten branden, een rekenmachine te laten rekenen, een walkman muziek te laten weergeven heb je een bron van elektrische energie nodig. Een spanningsbron

Nadere informatie

NASK1 SAMENVATTING ELEKTRICITEIT. Wanneer loopt er stroom? Schakelingen

NASK1 SAMENVATTING ELEKTRICITEIT. Wanneer loopt er stroom? Schakelingen NASK1 SAMENVATTING ELEKTRICITEIT Wanneer loopt er stroom? Elektrische apparaten werken alleen als er een stroom door loopt. Om de stroom te laten lopen is er altijd een spanningsbron nodig. Dat kan een

Nadere informatie

POWER LINE. Lesmateriaal plus proeven over elektriciteit. Een lespakket van Zoleerjemeer

POWER LINE. Lesmateriaal plus proeven over elektriciteit. Een lespakket van Zoleerjemeer POWER LINE Lesmateriaal plus proeven over elektriciteit Een lespakket van Zoleerjemeer POWER LINE Colofon Zoleerjemeer Een uitgave van Zoleerjemeer www.zoleerjemeer.nl 2013 A. Elsinga, alle rechten voorbehouden.

Nadere informatie

Theorie: Energieomzettingen (Herhaling klas 2)

Theorie: Energieomzettingen (Herhaling klas 2) les omschrijving 12 Theorie: Halfgeleiders Opgaven: halfgeleiders 13 Theorie: Energiekosten Opgaven: Energiekosten 14 Bespreken opgaven huiswerk Opgaven afmaken Opgaven afmaken 15 Practicumtoets (telt

Nadere informatie

Opgave 1 Er zijn twee soorten lading namelijk positieve en negatieve lading.

Opgave 1 Er zijn twee soorten lading namelijk positieve en negatieve lading. itwerkingen Opgave Er zijn twee soorten lading namelijk positieve en negatieve lading. Opgave 2 Een geleider kan de elektrische stroom goed geleiden. Metalen, zout water, grafiet. c. Een isolator kan de

Nadere informatie

Uitwerkingen VWO deel 1 H2 (t/m par. 2.5)

Uitwerkingen VWO deel 1 H2 (t/m par. 2.5) Uitwerkingen VWO deel 1 H2 (t/m par. 2.5) 2.1 Inleiding 1. a) Warmte b) Magnetische Energie c) Bewegingsenergie en Warmte d) Licht (stralingsenergie) en warmte e) Stralingsenergie 2. a) Spanning (Volt),

Nadere informatie

inkijkexemplaar Energie voor de lamp Techniek 1

inkijkexemplaar Energie voor de lamp Techniek 1 Nota s: Energie voor de lamp 1. Probleemstelling 50 2. Transport van elektriciteit in een kring 50 2.1. Wat is een elektrische stroomkring? 50 2.2. Stromen van water - stromen van elektriciteit 51 2.3.

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 4

Samenvatting Natuurkunde Hoofdstuk 4 Samenvatting Natuurkunde Hoofdstuk 4 Samenvatting door een scholier 2391 woorden 29 februari 2004 6,8 152 keer beoordeeld Vak Methode Natuurkunde Natuurkunde overal 4.1 Inleiding Deze paragraaf is een

Nadere informatie

5,6. Samenvatting door R woorden 24 januari keer beoordeeld. 1 Een stoomkring maken.

5,6. Samenvatting door R woorden 24 januari keer beoordeeld. 1 Een stoomkring maken. Samenvatting door R. 1985 woorden 24 januari 2016 5,6 130 keer beoordeeld Vak Methode NaSk Nova 1 Een stoomkring maken. Je komt in huis allerlei apparaten tegen die op elektriciteit werken. Apparaten die

Nadere informatie

Elektriciteit, wat is dat eigenlijk?

Elektriciteit, wat is dat eigenlijk? Achtergrondinformatie voor de leerkracht Te gebruiken begrippen tijdens de les. Weetje!! Let op de correcte combinatie lampjes en batterijen -- 1,2 V lampjes gebruiken met de AA-batterijen van 1,5 V ---

Nadere informatie

2 ELEKTRISCHE STROOMKRING

2 ELEKTRISCHE STROOMKRING 2 ELEKTRISCHE STROOMKRING Om elektrische stroom nuttig te gebruiken moet hij door een verbruiker vloeien. Verbruikers zijn bijvoorbeeld een gloeilampje, een motor, een deurbel. Om een gloeilampje te laten

Nadere informatie

Tandwielen. Katrollen

Tandwielen. Katrollen Met tandwielen kun je beweging van het ene apparaat overbrengen op een ander. Er zijn veel verschillende soorten tandwielen en de meeste apparaten maken er gebruik van. Met het aantal tandwielen kun je

Nadere informatie

Elektrische techniek

Elektrische techniek AOC OOST Almelo Groot Obbink 01-09-2013 . Zowel in huis als bij voertuigen heb je met elektriciteit te maken. Hoe zit een meterkast in elkaar? Hoe werkt een elektrisch ontstekingssysteem van een motor?

Nadere informatie

Hfd 3 Stroomkringen. Isolator heeft geen vrije elektronen. Molecuul. Geleider heeft wel vrije elektronen. Molecuul.

Hfd 3 Stroomkringen. Isolator heeft geen vrije elektronen. Molecuul. Geleider heeft wel vrije elektronen. Molecuul. Hfd 3 Stroomkringen Enkele begrippen: Richting van de stroom: Stroom loopt van de plus naar de min pool Richting van de elektronen: De elektronen stromen van de min naar de plus. Geleiders en isolatoren

Nadere informatie

Opgave 5 V (geschreven als hoofdletter) Volt (voluit geschreven) hoeft niet met een hoofdletter te beginnen (volt is dus goed).

Opgave 5 V (geschreven als hoofdletter) Volt (voluit geschreven) hoeft niet met een hoofdletter te beginnen (volt is dus goed). Uitwerkingen 1 Opgave 1 Twee Opgave 2 30 x 3 = 90 Opgave 3 Volt (afgekort V) Opgave 4 Voltmeter (ook wel spanningsmeter genoemd) Opgave 5 V (geschreven als hoofdletter) Volt (voluit geschreven) hoeft niet

Nadere informatie

1 Elektriciteit Oriëntatie 1.1 Elektrische begrippen Elektrische stroomkring

1 Elektriciteit Oriëntatie 1.1 Elektrische begrippen Elektrische stroomkring 1 Elektriciteit Oriëntatie Om met je auto of een tractor te kunnen rijden heb je elektriciteit nodig. Ook voor verlichting en je computer is veel elektriciteit nodig. Ook als je de mobiele telefoon aan

Nadere informatie

4,1. Samenvatting door L. 836 woorden 21 november keer beoordeeld. Natuurkunde. Natuurkunde samenvattingen Havo 4 periode 2.

4,1. Samenvatting door L. 836 woorden 21 november keer beoordeeld. Natuurkunde. Natuurkunde samenvattingen Havo 4 periode 2. Samenvatting door L. 836 woorden 21 november 2012 4,1 51 keer beoordeeld Vak Methode Natuurkunde Pulsar Natuurkunde samenvattingen Havo 4 periode 2. Hoofdstuk 3 Stroom, spanning en weerstand. * Elektrische

Nadere informatie

Lees eerst bij Uitleg leerlingen, proef 1 alles over de onderdelen van de elektrische kringloop. stroomkring 1 stroomkring 2

Lees eerst bij Uitleg leerlingen, proef 1 alles over de onderdelen van de elektrische kringloop. stroomkring 1 stroomkring 2 Lees eerst bij Uitleg leerlingen, proef 1 alles over de onderdelen van de elektrische kringloop. Bekijk de twee stroomkringen op de foto s hieronder. stroomkring 1 stroomkring 2 Noem voor beide stroomkringen

Nadere informatie

Samenvatting Natuurkunde H7 elektriciteit

Samenvatting Natuurkunde H7 elektriciteit Samenvatting Natuurkunde H7 elektriciteit Samenvatting door een scholier 1150 woorden 22 april 2016 8,3 8 keer beoordeeld Vak Natuurkunde Samenvatting Natuurkunde H7 Elektriciteit/Elektrische schakelingen

Nadere informatie

1 ENERGIE Inleiding Het omzetten van energie Fossiele brandstoffen Duurzame energiebronnen

1 ENERGIE Inleiding Het omzetten van energie Fossiele brandstoffen Duurzame energiebronnen 1 ENERGIE... 2 1.1. Inleiding... 2 1.2. Het omzetten van energie... 2 1.3. Fossiele brandstoffen... 5 1.4. Duurzame energiebronnen... 7 1.5. Kernenergie... 9 1.6. Energie besparen... 10 1.7. Energieverbruik

Nadere informatie

Thema 1 Natuurlijke verschijnselen

Thema 1 Natuurlijke verschijnselen Naut samenvatting groep 8 Mijn Malmberg Thema 1 Natuurlijke verschijnselen Samenvatting Krachten Als je kracht uitoefent op een voorwerp, reageert dat altijd op dezelfde manier. Enkele belangrijke krachten

Nadere informatie

Wist je, dat jij zelf bestaat uit vele miljoenen atomen en dus evenzo veel miljoenen batterijtjes?

Wist je, dat jij zelf bestaat uit vele miljoenen atomen en dus evenzo veel miljoenen batterijtjes? 1 Wat is elektriciteit? Elektriciteit is de bouwsteen van alles wat bestaat. Het is de energie die overal in de natuur voorkomt, in de vorm van uiterst kleine dingetjes, die atomen worden genoemd. Alles

Nadere informatie

Elektra. Retail Trainingen. alles over elektriciteit, strijkijzers, stofzuigers, klokken en ventilatoren

Elektra. Retail Trainingen. alles over elektriciteit, strijkijzers, stofzuigers, klokken en ventilatoren alles over elektriciteit, strijkijzers, stofzuigers, klokken en ventilatoren Onderdeel van de opleiding Verkopen in de Gemengde Branche Retail Trainingen 2 Dit vakinformatieboek is een uitgave van: Vereniging

Nadere informatie

Repetitie magnetisme voor 3HAVO (opgavenblad met waar/niet waar vragen)

Repetitie magnetisme voor 3HAVO (opgavenblad met waar/niet waar vragen) Repetitie magnetisme voor 3HAVO (opgavenblad met waar/niet waar vragen) Ga na of de onderstaande beweringen waar of niet waar zijn (invullen op antwoordblad). 1) De krachtwerking van een magneet is bij

Nadere informatie

Elektriciteit en stroom, wat is het? Proefjes met stroom en electriciteit

Elektriciteit en stroom, wat is het? Proefjes met stroom en electriciteit Energie 5 en 6 2 Elektriciteit en stroom, wat is het? Proefjes met stroom en electriciteit Doelen Begrippen Materialen De leerlingen: begrijpen hoe elektriciteit en stroom ontstaan, als een brandstof wordt

Nadere informatie

Glas en barnsteen hebben een tegengestelde lading als ze opgewreven zijn, de lading van gewreven glas noem je positief.

Glas en barnsteen hebben een tegengestelde lading als ze opgewreven zijn, de lading van gewreven glas noem je positief. Samenvatting door E. 2498 woorden 2 april 2015 7,2 23 keer beoordeeld Vak Methode Natuurkunde Pulsar Hoofdstuk 3 Elektriciteit 3.1 Lading, Spanning en Stroom Elektrische lading Door wrijving kunnen voorwerpen

Nadere informatie

Stroomkringen. opdracht 2

Stroomkringen. opdracht 2 Stroomkringen opdracht 8 Wat ga je doen? Je gaat een aantal stroomkringen maken. HIermee kun je bijvoorbeeld een lamp laten branden of een bel laten rinkelen. Lees eerst goed de opdracht en bekijk de illustratie

Nadere informatie

VWO 4 kernboek B hoofdstuk 8

VWO 4 kernboek B hoofdstuk 8 SAMNVATTING LKTICITIT VWO 4 kernboek B hoofdstuk 8 HOVLHID LADING Symbool Q (soms q) enheid C (Coulomb) Iedereen heeft wel eens gemerkt dat voorwerpen elektrische eigenschappen kunnen krijgen. Als je over

Nadere informatie

Profi Oeco Power LPE 2 Natuur en techniek

Profi Oeco Power LPE 2 Natuur en techniek Met z n allen hebben wij dagelijks reusachtige hoeveelheden energie nodig. Kijk maar eens naar een heel normale dag: Je wordt s morgens gewekt door je wekkerradio. Deze krijgt de stroom natuurlijk uit

Nadere informatie

Hoofdstuk 3. en energieomzetting

Hoofdstuk 3. en energieomzetting Hoofdstuk 3 Energie en energieomzetting branders luchttoevoer brandstoftoevoer koelwater condensator stoomturbine generator transformator regelkamer stoom water ketel branders 1 Energiesoort Omschrijving

Nadere informatie

Elektrische energie. Naam: Klas: Leerkracht: Mr. Verlinden INLEIDING

Elektrische energie. Naam: Klas: Leerkracht: Mr. Verlinden INLEIDING Naam: Klas: Leerkracht: Mr. Verlinden Elektrische energie INLEIDING Eeuwenlang zochten mensen naar nieuwe manieren om energie op te wekken. Energie betekend niets anders dan het vermogen werk te kunnen

Nadere informatie

Module 4 Energie. Vraag 3 Een bron van "herwinbare" energie is: A] biomassa B] de zon C] steenkool D] aardolie E] bewegend water

Module 4 Energie. Vraag 3 Een bron van herwinbare energie is: A] biomassa B] de zon C] steenkool D] aardolie E] bewegend water Module 4 Energie Vraag 1 Wat hoort bij het indirect energieverbruik van een apparaat? Kies het BESTE antwoord A] De energie wat het apparaat nuttig verbruikt. B] De energie die het apparaat niet nuttig

Nadere informatie

6 Elektriciteit. Pulsar 1-2 vwo/havo uitwerkingen 2012 Noordhoff Uitgevers 1. 6.1 Elektriciteit om je heen. 1 Het juiste antwoord is D: 5000 V.

6 Elektriciteit. Pulsar 1-2 vwo/havo uitwerkingen 2012 Noordhoff Uitgevers 1. 6.1 Elektriciteit om je heen. 1 Het juiste antwoord is D: 5000 V. 6 Elektriciteit 6.1 Elektriciteit om je heen 1 Het juiste antwoord is D: 5000 V. 2 Overeenkomst: beide leveren elektrische energie. Verschil: stopcontact levert een hoge (wissel)spanning en een batterij

Nadere informatie

Thema : Licht Onderwerp : Het licht bij de oermens!

Thema : Licht Onderwerp : Het licht bij de oermens! 1 Thema : Licht Onderwerp : Het licht bij de oermens! Het licht bij de oermens! Onze allereerste voorouders waren voor de ontdekking van het vuur aangewezen op de zon. De zon gaf hun immers warmte en licht.

Nadere informatie

5 Elektriciteit. 5.1 Elektriciteit om je heen

5 Elektriciteit. 5.1 Elektriciteit om je heen 5 Elektriciteit 5.1 Elektriciteit om je heen 2 Overeenkomst: beide leveren elektriciteit. Verschil: stopcontact levert een hoge spanning en een batterij levert een lage spanning 3 spanningsbron volt penlight

Nadere informatie

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1. 23 APRIL 2014 10.30 12.30 uur

TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1. 23 APRIL 2014 10.30 12.30 uur TWEEDE RONDE NATUURKUNDE OLYMPIADE 2014 TOETS 1 23 APRIL 2014 10.30 12.30 uur 1 RONDDRAAIENDE MASSA 5pt Een massa zit aan een uiteinde van een touw. De massa ligt op een wrijvingloos oppervlak waar het

Nadere informatie

Vermogen. Student booklet

Vermogen. Student booklet Vermogen Student booklet Vermogen - INDEX - 2006-04-06-16:56 Vermogen Elektrisch vermogen is enigszins vergelijkbaar met de lucht die u inademt: u denkt er niet echt over na, totdat er geen lucht meer

Nadere informatie

5,4. Spreekbeurt door een scholier 1606 woorden 21 mei keer beoordeeld. Nederlands. A. Er zijn verschillende soorten en vormen van energie.

5,4. Spreekbeurt door een scholier 1606 woorden 21 mei keer beoordeeld. Nederlands. A. Er zijn verschillende soorten en vormen van energie. Spreekbeurt door een scholier 1606 woorden 21 mei 2003 5,4 169 keer beoordeeld Vak Nederlands A. Er zijn verschillende soorten en vormen van energie. Ik ga deze spreekbeurt houden over energie. Verschillende

Nadere informatie

De dynamo. Student booklet

De dynamo. Student booklet De dynamo Student booklet De dynamo - INDEX - 2006-04-10-14:10 De dynamo In deze module wordt de dynamo behandeld. We beginnen met enkele vereenvoudigde afbeeldingen, om de stof gemakkelijker te begrijpen.

Nadere informatie

Elektrische huisinstallatie

Elektrische huisinstallatie Elektrische huisinstallatie Titel: Vak: Domein: Sector: 3D aspecten: Elektrische apparaten - Ontwerp een huisinstallatie Natuurkunde Energie Havo - vwo Werkwijze: Modelontwikkeling en gebruik, Onderzoeken,

Nadere informatie

VWO 4 kernboek B hoofdstuk 8

VWO 4 kernboek B hoofdstuk 8 SAMENVATTING ELEKTRICITEIT VWO 4 kernboek B hoofdstuk 8 HOEVEELHEID LADING Symbool Q (soms q) Eenheid C (Coulomb) Iedereen heeft wel eens gemerkt dat voorwerpen elektrische eigenschappen kunnen krijgen.

Nadere informatie

Elektriciteit. Hoofdstuk 2

Elektriciteit. Hoofdstuk 2 Elektriciteit Hoofdstuk 2 (het blijft spannend) Om de lamp te laten branden moet er een gesloten stroomkring zijṇ Om de lamp te laten branden moet er een gesloten stroomkring zijṇ Om de lamp te laten branden

Nadere informatie

2.5: WINDENERGIE GEBRUIKEN 2.6: ZONNEWARMTE GEBRUIKEN 2.7: ZONNESTROOM GEBRUIKEN 2.8: BIO-ENERGIE GEBRUIKEN

2.5: WINDENERGIE GEBRUIKEN 2.6: ZONNEWARMTE GEBRUIKEN 2.7: ZONNESTROOM GEBRUIKEN 2.8: BIO-ENERGIE GEBRUIKEN WERKBOEKJE LES 2: HOE KAN IK? Dit werkboekje is van TEAM Naam : Naam : Naam : Naam : Instructie: Doe de opdrachten om en om, kies steeds een andere kleur. Kruis aan als je een opdracht gedaan hebt. Zuinig

Nadere informatie

6.0 Elektriciteit 1 www.natuurkundecompact.nl

6.0 Elektriciteit 1 www.natuurkundecompact.nl 6.0 Elektriciteit 1 www.natuurkundecompact.nl 6.1 a Stroomkring b Geleiders en isolatoren 6.2 Chemische spanningsbron 6.3 a Schakelingen b Schakelingen (Crocodile) 6.4 a Stroom meten (Crocodile) b Schakelingen

Nadere informatie

Lessencyclus Elektriciteit

Lessencyclus Elektriciteit Lessencyclus Elektriciteit Gegeven in het Science Lab op zowel de 4 e Montessorischool de Pinksterbloem als op de 5 e Montessorischool Watergraafsmeer te Amsterdam Samengesteld door Elmer Roze 2013 In

Nadere informatie

Hoofdstuk 25 Elektrische stroom en weerstand

Hoofdstuk 25 Elektrische stroom en weerstand 3--6 Hoofdstuk 5 Elektrische stroom en weerstand Inhoud hoofdstuk 5 De elektrische batterij Elektrische stroom De wet van Ohm: weerstand en Soortelijke weerstand Elektrisch vermogen Vermogen in huishoudelijke

Nadere informatie

Alternatieve energiebronnen

Alternatieve energiebronnen Alternatieve energiebronnen energie01 (1 min, 5 sec) energiebronnen01 (2 min, 12 sec) Windenergie Windmolens werden vroeger gebruikt om water te pompen of koren te malen. In het jaar 650 gebruikte de mensen

Nadere informatie

6,3. Werkstuk door een scholier 1843 woorden 2 december keer beoordeeld. Inleiding

6,3. Werkstuk door een scholier 1843 woorden 2 december keer beoordeeld. Inleiding Werkstuk door een scholier 1843 woorden 2 december 2003 6,3 32 keer beoordeeld Vak ANW Inleiding Energie is iets dat altijd in de buurt is. Bijvoorbeeld een boterham eten, tanken en wassen. Het meeste

Nadere informatie

QUARK_5-Thema-01-elektrische kracht Blz. 1

QUARK_5-Thema-01-elektrische kracht Blz. 1 QUARK_5-Thema-01-elektrische kracht Blz. 1 THEMA 1: elektrische kracht Elektriciteit Elektrische lading Lading van een voorwerp Fenomeen: Sommige voorwerpen krijgen een lading door wrijving. Je kan aan

Nadere informatie

hoofdstuk 1 Elektriciteit.

hoofdstuk 1 Elektriciteit. hoofdstuk 1 Elektriciteit. 1.1 Lading. Veel toestellen op het laboratorium werken met elektriciteit. De werking van deze toestellen berust op elektrische lading die stroomt. We kennen twee soorten lading:

Nadere informatie

- toelichting op het programma - Zet de radio eens aan. Wil je koffie? Hé, hoe kan dat nou, de computer doet het niet, o ja de stekker zit niet in

- toelichting op het programma - Zet de radio eens aan. Wil je koffie? Hé, hoe kan dat nou, de computer doet het niet, o ja de stekker zit niet in Techniek Praktisch - toelichting op het programma - Zet de radio eens aan. Wil je koffie? Hé, hoe kan dat nou, de computer doet het niet, o ja de stekker zit niet in We zijn de hele dag afhankelijk van

Nadere informatie

Groep 7 - Les 1 Stroom in huis

Groep 7 - Les 1 Stroom in huis Leerkrachtinformatie Groep 7 - Les Stroom in huis Lesduur: 45 minuten (zelfstandig) DOEL De leerlingen ontdekken en beschrijven de werking van een stekker en stopcontact. De leerlingen kunnen het gebruik

Nadere informatie

b. Bereken de vervangingsweerstand RV. c. Bereken de stroomsterkte door de apparaten.

b. Bereken de vervangingsweerstand RV. c. Bereken de stroomsterkte door de apparaten. Oefenopgaven vervangingsweerstand en transformator 1 Twee lampjes L1 en L2 staan in serie: R1 = 5,0 Ω en R2 = 9,0 Ω Bereken de vervangingsweerstand van de twee lampjes. gegeven: R1 = 5,0 Ω, R2 = 9,0 Ω

Nadere informatie

toekomstopwielen.be 1.1 Branden en zoemen

toekomstopwielen.be 1.1 Branden en zoemen 1.1 Branden en zoemen We beginnen met een prachtige toepassing van de parallel- of serieschakeling. In het stroomschema dat je hieronder ziet, zitten een autobatterij, enkele lampen, een zoemer en schakelaars.

Nadere informatie

Meetinstrumenten. Student booklet

Meetinstrumenten. Student booklet Meetinstrumenten Student booklet Meetinstrumenten - INDEX - 2006-04-06-16:59 Meetinstrumenten In deze module wordt besproken hoe we meetinstrumenten op de juiste manier kunnen gebruiken. Het wordt steeds

Nadere informatie

Multifunctionele detector Metaal- en stroomdetector

Multifunctionele detector Metaal- en stroomdetector De verpakking bevat volgende stukken: Omschrijving: Multifunctionele detector Metaal- en stroomdetector 1) Kantelbare metaaldetector 6) Metalen plaat voor gelijkstroomtest 2) Batterijvak 7) Controlelampje

Nadere informatie

Magnetische toepassingen in de motorvoertuigentechniek (2)

Magnetische toepassingen in de motorvoertuigentechniek (2) Magnetische toepassingen in de motorvoertuigentechniek () E. Gernaat, ISBN 97-9-97-3- 1 Inductiespanning 1.1 Introductie Eén van de belangrijkste ontdekkingen op het gebied van de elektriciteit was het

Nadere informatie

INLEIDING. Veel succes

INLEIDING. Veel succes INLEIDING In de eerste hoofdstukken van de cursus meettechnieken verklaren we de oorsprong van elektrische verschijnselen vanuit de bouw van de stof. Zo leer je o.a. wat elektrische stroom en spanning

Nadere informatie

hoofdstuk 1 Elektriciteit.

hoofdstuk 1 Elektriciteit. spanning 2007-2008 hoofdstuk 1 Elektriciteit. 1.1 Lading. Veel toestellen op het laboratorium werken met elektriciteit. De werking van deze toestellen berust op van elektrische lading die stroomt. We kennen

Nadere informatie

Diktaat Spanning en Stroom

Diktaat Spanning en Stroom Diktaat Spanning en Stroom hoofdstuk 1 Elektriciteit. 1.1 Lading. Veel toestellen op het laboratorium werken met elektriciteit. De werking van deze toestellen berust op elektrische lading die stroomt.

Nadere informatie

Flipping the classroom

Flipping the classroom In dit projectje krijg je geen les, maar GEEF je zelf les. De leerkracht zal jullie natuurlijk ondersteunen. Dit zelf les noemen we: Flipping the classroom 2 Hoe gaan we te werk? 1. Je krijgt of kiest

Nadere informatie

LEERACTIVITEIT: De stroomkring in beeld

LEERACTIVITEIT: De stroomkring in beeld LEERACTIVITEIT: De stroomkring in beeld Duur leeractiviteit Graad Richting Vak Onderwijsnet Leerplan 2 3 ASO/TSO Fysica Toegepaste Fysica Elektriciteit Vrij onderwijs/go Bruikbaar in alle leerplannen met

Nadere informatie

7.4. Wat is de batterij? Hoe werkt een batterij? Geschiedenis van de batterij. Boekverslag door E woorden 8 mei keer beoordeeld

7.4. Wat is de batterij? Hoe werkt een batterij? Geschiedenis van de batterij. Boekverslag door E woorden 8 mei keer beoordeeld Boekverslag door E. 4599 woorden 8 mei 2007 7.4 253 keer beoordeeld Vak Natuurkunde De batterij (de voeding) Wat is de batterij? Een batterij is een ten eerste een voeding. Dat is een onderdeel van een

Nadere informatie

Samenvatting Natuurkunde Hoofdstuk 5

Samenvatting Natuurkunde Hoofdstuk 5 Samenvatting Natuurkunde Hoofdstuk 5 Samenvatting door Fleur 1005 woorden 10 oktober 2017 4 3 keer beoordeeld Vak Methode Natuurkunde Pulsar Natuurkunde 5.1 Een schema van de elektrische installatie van

Nadere informatie

Wisselspanningen. Maximale en effectieve waarde. We gaan de wisselspanning aansluiten op een weerstand. U R. In deze situatie geldt de wet van Ohm:

Wisselspanningen. Maximale en effectieve waarde. We gaan de wisselspanning aansluiten op een weerstand. U R. In deze situatie geldt de wet van Ohm: Wisselen Maximale en effectieve waarde We gaan de wissel aansluiten op een weerstand. I I G In deze situatie geldt de wet van Ohm: I = We zien een mooie sinusvormige wissel. De hoogste waarde word ook

Nadere informatie

Inleiding 3hv. Opdracht 1. Statische elektriciteit. Noem drie voorbeelden van hoe je statische elektriciteit kunt opwekken.

Inleiding 3hv. Opdracht 1. Statische elektriciteit. Noem drie voorbeelden van hoe je statische elektriciteit kunt opwekken. Inleiding hv Opdracht Statische elektriciteit Noem drie voorbeelden van hoe je statische elektriciteit kunt opwekken Opdracht Serie- en parallelschakeling Leg van elke schakeling uit ) of het een serie-

Nadere informatie

Elektrische energie en elektrisch vermogen

Elektrische energie en elektrisch vermogen Elektrische energie en elektrisch vermogen Grootheid Symbool Eenheid Lading Q C: Coulomb Spanning U V: Volt Stroomsterkte I A: Ampère Energie E J: Joule Weerstand R Ω: Ohm Spanning: noodzakelijk om lading

Nadere informatie

Impedantie V I V R R Z R

Impedantie V I V R R Z R Impedantie Impedantie (Z) betekent: wisselstroom-weerstand. De eenheid is (met als gelijkstroom-weerstand) Ohm. De weerstand geeft aan hoe goed de stroom wordt tegengehouden. We kennen de formules I R

Nadere informatie

Les De productie van elektriciteit

Les De productie van elektriciteit LESSENSERIE ENERGIETRANSITIE Les De productie van elektriciteit Werkblad Doe de stekker in het stopcontact en je hebt licht, geluid, beeld, beweging... Allemaal dankzij elektriciteit. Maar waar komt dat

Nadere informatie

Elektrotechniek voor Dummies

Elektrotechniek voor Dummies Elektrotechniek voor Dummies Het programma Spoedcursus Elektrotechniek voor dummies Spanning/stroom Vermogen Weerstand (Resistantie) Wet van Ohm Serie/Parallel AC-DC Multimeter Componenten Weerstand Draadweerstand

Nadere informatie

Werkingsprincipe van de brandstofcel... P. 37. Aanwijzingen ter bescherming van het milieu... P. 41

Werkingsprincipe van de brandstofcel... P. 37. Aanwijzingen ter bescherming van het milieu... P. 41 PROFI HYDRO CELL KIT GEBRUIKSAANWIJZING NL INHOUD Hydro Cell Kit... P. 36 Belangrijke aanwijzing voor het gebruik van de Hydro Cell Kit...P. 36 Veiligheidsaanwijzingen... P. 36 Reglementair gebruik...p.

Nadere informatie

Spreekbeurten.info Spreekbeurten en Werkstukken

Spreekbeurten.info Spreekbeurten en Werkstukken Vuur De geschiedenis van het vuur Vuur is niet iets dat uitgevonden is. Het was er altijd al. Vroeger dachten de ouden Grieken dat de goden het aan de mensen hadden gegeven. In de oertijd was vuur een

Nadere informatie

Elektro-magnetisme Q B Q A

Elektro-magnetisme Q B Q A Elektro-magnetisme 1. Een lading QA =4Q bevindt zich in de buurt van een tweede lading QB = Q. In welk punt zal de resulterende kracht op een kleine positieve lading QC gelijk zijn aan nul? X O P Y

Nadere informatie

[Samenvatting Energie]

[Samenvatting Energie] [2014] [Samenvatting Energie] [NATUURKUNDE 3 VWO HOOFDSTUK 4 WESLEY VOS 0 Paragraaf 1 Energie omzetten Energiesoorten Elektrisch energie --> stroom Warmte --> vb. de centrale verwarming Bewegingsenergie

Nadere informatie

INFORMATIE STROOM WATER INTERNET EVENEMENTENHAL

INFORMATIE STROOM WATER INTERNET EVENEMENTENHAL INFORMATIE STROOM WATER INTERNET EVENEMENTENHAL STROOM Volt (V) = Hoeveelheid van de spanning Stroom/Ampere (A) = Sterkte van de spanning Wattage (W) = Vermogen (spanning x stroom) W = A x V Over elektriciteit

Nadere informatie

Project Energie. Week 1ABC: Mens en dier

Project Energie. Week 1ABC: Mens en dier Project Energie. Week 1ABC: Mens en dier Info: Wat is energie? Energie geeft kracht, licht, warmte en beweging. De zon geeft ons licht en warmte. Voedsel is de brandstof van mensen en dieren. Door te eten

Nadere informatie

Toets Wetenschap en Techniek groep 8 SAM

Toets Wetenschap en Techniek groep 8 SAM Toets Wetenschap en Techniek groep 8 SAM Magnetisme 1. magneten trekken de volgende stoffen aan (zet een cirkel om de goede antwoorden): A. hout B. ijzer C. plastic D.kurk E.staal F. koper G. porselein

Nadere informatie

1.1 Hoe branden de lampen?

1.1 Hoe branden de lampen? 1.1 Hoe branden de lampen? In deze eerste opdracht ga je aan de slag met parallel- en serieschakelingen. De auto op de tekening heeft vier lampen met elk twee contactpunten, een accu en een contactsleutel

Nadere informatie

2.5: WINDENERGIE GEBRUIKEN 2.6: ZONNEWARMTE GEBRUIKEN 2.7: ZONNESTROOM GEBRUIKEN 2.8: BIO-ENERGIE GEBRUIKEN

2.5: WINDENERGIE GEBRUIKEN 2.6: ZONNEWARMTE GEBRUIKEN 2.7: ZONNESTROOM GEBRUIKEN 2.8: BIO-ENERGIE GEBRUIKEN WERKBOEKJE LES 2: HOE KAN IK? Dit werkboekje is van TEAM Naam : Naam : Naam : Naam : Instructie: Kruis aan als je een opdracht gedaan hebt. Zuinig omgaan met energie 2.1: LET OP DE LAMPEN 2.2: LETTEN OP

Nadere informatie

Signalen stroom, spanning, weerstand, vermogen AC, DC, effectieve waarde

Signalen stroom, spanning, weerstand, vermogen AC, DC, effectieve waarde Technologie 1 Elektrische en elektronische begrippen Signalen stroom, spanning, weerstand, vermogen AC, DC, effectieve waarde Opleiding Pop en Media Peet Ferwerda, januari 2002 Deze instructie wordt tijdens

Nadere informatie

warmte en licht energie omzetting elektriciteit In een lamp wordt energie omgezet

warmte en licht energie omzetting elektriciteit In een lamp wordt energie omgezet Energieomzetting We maken veel gebruik van elektrische energie. Aan elektrische energie hebben we niet zoveel. Elektrische energie is maar een tussenvorm van energie. Bij een elektrische verwarming, willen

Nadere informatie

Basis Elektriciteit R = U/I. Gelijkstroom (Direct Current) Batterij of zonnecel; de elektronen stromen allemaal in 1 richting.

Basis Elektriciteit R = U/I. Gelijkstroom (Direct Current) Batterij of zonnecel; de elektronen stromen allemaal in 1 richting. Basis Elektriciteit Gelijkstroom (Direct Current) Wisselstroom (Alternating Current) Gesloten stroomkring (Closed circuit) DC AC Batterij of zonnecel; de elektronen stromen allemaal in 1 richting. Lichtnet;

Nadere informatie

DVD speler. mobiele telefoon. verwarming. Lees de uitleg over meten. en energie meten. Zet een X bij het juiste antwoord.

DVD speler. mobiele telefoon. verwarming. Lees de uitleg over meten. en energie meten. Zet een X bij het juiste antwoord. Lees het verhaal van Sjoerd en maak de opdracht. Zet een X bij de apparaten die energie verbruiken. Dit is de kamer van Sjoerd. Hij heeft veel apparaten. Het zijn er meer dan 10!!. Ze gebruiken allemaal

Nadere informatie

Energie. Docentenhandleiding. Lesmateriaal onderbouw havo/vwo. Dit lesmateriaal is voor gebruik in de klas én in NEMO

Energie. Docentenhandleiding. Lesmateriaal onderbouw havo/vwo. Dit lesmateriaal is voor gebruik in de klas én in NEMO Energie Docentenhandleiding Lesmateriaal onderbouw havo/vwo Dit lesmateriaal is voor gebruik in de klas én in NEMO Informatie bij dit lesmateriaal NEMO en onderwijs NEMO heeft een uitgebreid gratis educatief

Nadere informatie

Stroomkring XL handleiding voor leerkrachten

Stroomkring XL handleiding voor leerkrachten Stroomkring XL Inleiding Dagelijks verbruiken we elektriciteit. Maar toch is elektriciteit een heel abstract begrip. Waar komt elektriciteit vandaan? En wat gebeurt er precies wanneer we thuis de schakelaar

Nadere informatie