Eenheden. In het dagelijks leven maken we van talloze termen gebruik, waarvan we ons de werkelijke herkomst eigenlijk niet goed realiseren.

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Eenheden. In het dagelijks leven maken we van talloze termen gebruik, waarvan we ons de werkelijke herkomst eigenlijk niet goed realiseren."

Transcriptie

1 Eenheden In het dagelijks leven maken we van talloze termen gebruik, waarvan we ons de werkelijke herkomst eigenlijk niet goed realiseren. Hoe we grote getallen klein maken Als we naar de groenteboer gaan om een kilo aardappels te kopen, weten we allemaal dat we 1000 gram willen hebben. We bedoelen eigenlijk een hoeveelheid aardappels die overeenkomt met ongeveer 1000 gram. Het zou iets meer, maar ook iets minder kunnen zijn. Die kilo die bekt iets lekkerder dan die 1000 gram. Het is een soort van communicatietaal geworden. (Groenteboer, mag ik 1000 gram aardappels? dat klinkt gewoon niet) Zo zijn er tal van begrippen in onze spreektaal die een getal uitdrukken waarvan we ons de betekenis niet tot in detail realiseren. Een paar voorbeelden: Hoe hard rij je? 120 Wat voor intern geheugen heeft deze computer? 500 Mb. Wat is de luchtdruk? 1009 mbar Waar vind ik Sky Radio? FM Hoeveel heeft dat project gekost? 15,5 miljoen Hoe hard is dat geluid 75 db Hoe hoog is die toon 4 khz Hoe hard rij je? Het antwoord zou kunnen: zijn 120 km per uur, of m per uur of mm per uur. Intern geheugen zou moeten zijn Bytes Luchtdruk zou moeten zijn 1,009 Bar Sky Radio vindt je op Hertz Het project kostte euro Het geluid heeft een geluidssterkte 75 db SPL En de toon heeft een hoogte van Hertz Dit zijn maar een paar voorbeelden, onze taal is ervan doorspekt. Soms hebben we de behoefte om een groot getal kleiner te maken, om het overzichtelijker of bevattelijker te maken. Denk hierbij aan de kilo als gewichtseenheid, de megahertz voor hoge frequenties of de liter als eenheid van volume. Ook hebben we soms de behoefte uiterst kleine getallen wat bevattelijker te maken door ze in een simpel getal uit te drukken. Hierbij denken we bijvoorbeeld aan de ma (milli ampère) als eenheid van stroom of de mbar als eenheid van druk. We praten dan bij een stroom van 0,010 A (Ampère) over 10 ma (milli Ampère), dat klinkt lekkerder. Ook praten we over 1025 mb (milli Bar) terwijl we ook 1,025 Bar kunnen zeggen 1

2 Hoe zijn die termen opgebouwd?. Hieronder een overzicht: Pico Nano is een biljoenste van de eenheid waarover gesproken wordt is één miljardste van de eenheid waarover gesproken wordt 1 / / Micro is één miljoenste van de eenheid waarover gesproken wordt 1 / Milli is één duizendste van de eenheid waarover gesproken wordt 1 / Dan komt de eigenlijke eenheid in hele waarden 1 Kilo een hoeveelheid van duizend eenheden 1000 Mega een hoeveelheid van één miljoen eenheden Giga is een hoeveelheid van één miljard eenheden Terra is een hoeveelheid van één biljoen eenheden Als we dat nog wat verder compleet maken ziet dat er in getallen zo uit: 0, één triljard deel 0, één triljoen deel 0, één biljard deel 0, pico één biljoen deel 0, nano één miljardste deel 0, micro is één miljoenste deel is aangeduid met de letter 0,001 milli is een duizendste deel aangeduid met de letter m 1 is de originele eenheid 1,000 kilo is 1000 x de orginele eenheid aangeduid met de letter k 1, mega miljoen aangeduid met hoofdletter M 1, giga miljard mrd 1, terra biljoen 1, biljard 1, triljoen 1, triljard Merk bij bovenstaande notering op dat er tussen iedere 3 nullen een puntje staat; dat is een gewoonte waarmee getallen meer leesbaar gemaakt worden. Bij de relatief kleinere getallen kun je op die manier snel zien of het om duizendtallen, miljoenen op miljarden gaat. Bij triljoenen en biljoenen in het toch weer nullen tellen geblazen. Daaruit kunnen we constateren dat hoe groter het getal is, hoe moeilijker hij te lezen en te bevatten is. Gelukkig komen zulke grote getallen nog niet zo vaak voor. In de sterrenkunde kom je dit soort grote getallen af en toe tegen en de kleinste getallen krijg je in de nano-technologie nog wel eens te horen. Omdat deze getallen verder niet vaak voorkomen laten we ze hier verder buiten beschouwing en kijken we uitsluitend verder van nano tot terra 2

3 Machten van tien Nou is al dat geschrijf van die nullen niet zo heel erg makkelijk en vaak wordt er dan ook gebruik gemaakt van een notatie in machten van tien. Dat is een wat wetenschappelijker benadering van getallen, die, als je hem door hebt, veel verder gaat dan de hierboven genoemde benamingen. Hieronder wat uitleg. Als we een getal kwadrateren wil dat zeggen dat we dat getal met zichzelf vermenigvuldigen. Het kwadraat van 3 is 9, omdat 3 x 3 = 9. We schrijven dat iets anders op namelijk 3 2 = 9. En noemen dat dan drie tot de tweede macht of drie kwadraad Als we een getal tot de derde macht verheffen, wil dat zeggen dat we het getal drie keer met zichzelf vermenigvuldigen. De derde macht van 4 is dus 4 x 4 x 4 = 64. We schijven dat dan op als 4 3 = 64. We noemen dat ook wel vier tot de derde Zo kunnen we ook uitrekenen, en dan draaien we het beetje om, dat: 8 5 = want 8 x 8 x 8 x 8 x 8 = Dat kun je met ieder willekeurig getal doen, zo is 56 3 = Hoe groter de getallen worden, hoe lastiger is het echter uit te rekenen. Dat is echter niet het geval bij machten van 10. Als je 10 met zichzelf vermenigvuldigt (10 2) krijg je 100. Doe je dat nog een keer (10 3 ), krijg je Voor iedere keer dat je het extra met 10 vermenigvuldigt krijg je een nul extra kilo k Mega M giga g terra T Zo kunt je uitdrukken dat = en dan weet u ineens dat veel makkelijker is om te begrijpen en te bevatten dan dat getal met al die nullen. Op deze manier zouden we kunnen uitdrukken dat de frequentie van SkyRadio ligt op 104,0 x 10 6 Hz, ofwel MHz. Let daarbij op dat in praktijk altijd het x-teken wordt weggelaten. Soms zetten we i.p.v. het vermenigvuldigingsteken een punt. We schrijven dan 104, Hz of 104, Hz. Maar dan spreekt 104,0 MHz toch weer makkelijker. 3

4 Je zou bovenstaande rij ook naar getallen die kleiner zijn dan 0 uit kunnen breiden. Je zou de exponent kunnen veranderen in een negatief getal. Je krijgt dan onderstaand model , , ,001 milli m , , , micro , , , nano n Zo praten we van een condensator van 20 nf Farad ofwel Farad Machten van 10 vormen een term die in de techniek veelvuldig gebruikt wordt. Daarnaast wordt veel in termen van kilo, micro, mega, enz, enz gesproken. Dit alles resulteert in onderstaande totaal tabel , nano n , , , micro , , ,001 milli m ,01 hecto ,1 deci deca hecta kilo k Mega M giga g Nog een paar begrippen die dagelijks voorkomen. Iemand heeft een stuk grond van 4 hectare grootte In het beslag voor het brood moet 300 milliliter water We nemen een paracetamolletje van 500 milligram We rijden op de autoweg langs talloze hectometerpaaltjes De depressie heeft een luchtdruk van 975 hectopascal De condensator heeft een capaciteit van 100 micro Farad De weerstandswaarde bedraagt 10 mega Ohm De harde schijf heeft een opslag capaciteit van 200 Giga Byte 4

5 De FM frequentie van deze koptelefoon ligt op 872 Mega Herz Het ruitjespapier heeft een schaalverdeling van 5 milli meter Het vliegtuig vliegt op een hoogte van meter Om het tuinpad te verhogen bestelden we 5 kubieke meter zand We hebben het huis voor een ton verbouwd De resolutie van de foto bedraagt 5 mega pixels Vul zelf met nog 5 begrippen aan: Praktijkoefening Eenheden Algemeen Hoe hard rij je? Hoeveel m per seconde? Hoeveel mm per sec 120 km Wat voor geheugen heeft deze Harde schijf? Hoeveel giga Byte Mb. Wat is de luchtdruk? Hoeveel Bar 1009 mbar Waar vind ik Sky Radio? Hoeveel Mega Herz Hoeveel Kilo Herz FM Hoeveel heeft dat project gekost? Hoeveel gulden? 15,5 miljoen euro 5

6 Hoe hoog is die toon? 4 khz Hoeveel Hz is dat dan? En hoeveel MHz? Bij welke frequentie is deze toon een octaaf hoger? Machten van tien Hoeveel is 10 6 Hoeveel is 1, Hoeveel K heeft een weerstand van ohm Hoeveel capaciteit heeft een condensator van Farad Hoeveel kilowatt vermogen heeft een windmolen van 3MW Hoeveel km legt iemand af die gedurende 15 minuten 30 m per sec rijdt Hoeveel kruiwagens van 50 liter moet u kruien om 3 kuub zand uit te rijden Hoeveel mensen van 75 kilo kunnen er op een brug staan die erop berekend is maximaal 30 ton te kunnen dragen 6

Rekenen. Grote en kleine getallen

Rekenen. Grote en kleine getallen Rekenen Grote en kleine getallen In de elektrotechniek wordt vaak gewerkt met heel grote en heel kleine getallen. Het is dan niet te doen om die helemaal uit te schrijven. Er wordt dan een aanduiding bijgezet.

Nadere informatie

11 Meten en maten. Er zijn nog meer maten. Die gebruik je minder vaak. uit het hoofd

11 Meten en maten. Er zijn nog meer maten. Die gebruik je minder vaak. uit het hoofd De dollar heeft een andere waarde dan de euro. De verhouding van de waarde van de ene munt ten opzichte van de andere heet de wisselkoers. Als je een munt koopt, betaal je de aankoopkoers. De aankoopkoers

Nadere informatie

6 VEELVOUDEN EN ONDERDELEN VAN EENHEDEN

6 VEELVOUDEN EN ONDERDELEN VAN EENHEDEN 6 VEELVOUDEN EN ONDERDELEN VAN EENHEDEN Bij weerstanden, maar ook bij spanning en stroom, kunnen zeer uit een lopende waarden voorkomen. Spanning kan liggen tussen bijvoorbeeld 0,000 001 V en 160 000 V.

Nadere informatie

Rekenkunde, eenheden en formules voor HAREC. 10 april 2015 presentator : ON5PDV, Paul

Rekenkunde, eenheden en formules voor HAREC. 10 april 2015 presentator : ON5PDV, Paul Rekenkunde, eenheden en formules voor HAREC 10 april 2015 presentator : ON5PDV, Paul Vooraf : expectation management 1. Verwachtingen van deze presentatie (inhoud, diepgang) U = R= R. I = 8 Ω. 0,5 A =

Nadere informatie

11 Meten en maten VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Meten en maten

11 Meten en maten VOORBEELDPAGINA S. Bestelnr Het grote rekenboek - overzicht - Hoofdstuk Meten en maten Bestelnr. Het grote rekenboek - overzicht - Hoofdstuk Meten en maten K-Publisher B.V. Prins Hendrikstraat NL- CS Bodegraven Telefoon +(0)- 0 Telefax +(0)- info@k-publisher.nl www.k-publisher.nl De dollar

Nadere informatie

Hoofdstuk 1 : REKENEN

Hoofdstuk 1 : REKENEN 1 / 6 H1 Rekenen Hoofdstuk 1 : REKENEN 1. Wat moet ik leren? (handboek p.3-34) 1.1 Het decimaal stelsel In verband met het decimaal stelsel: a) het grondtal van ons decimaal stelsel geven. b) benamingen

Nadere informatie

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken

Deel 1. het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken Deel 1 78 & het complete zakboek voor groep 7 & 8 deel 1 hele getallen, kommagetallen en breuken 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij

Nadere informatie

Les A-03 Binaire en hexadecimale getallen

Les A-03 Binaire en hexadecimale getallen Les A-03 Binaire en hexadecimale getallen In deze les wordt behandeld hoe getallen kunnen worden voorgesteld door informatie die bestaat uit reeksen 0-en en 1-en. We noemen deze informatie digitale informatie.

Nadere informatie

(o.a. voor 2F en 3F) Inhoud

(o.a. voor 2F en 3F) Inhoud (o.a. voor 2F en 3F) Inhoud Optellen... 2 Aftrekken... 3 Vermenigvuldigen... 4 Delen... 5 Tot de macht... 6 Combinaties... 7 Wortels... 7 Afronden... 8 Breuken... 10 Procenten... 11 Verhoudingen... 12

Nadere informatie

Weerstand. Bron: http://mediatheek.thinkquest.nl/~kl010/elektro/weerstand.htm. Cursus Radiozendamateur 1

Weerstand. Bron: http://mediatheek.thinkquest.nl/~kl010/elektro/weerstand.htm. Cursus Radiozendamateur 1 Bron: http://mediatheek.thinkquest.nl/~kl010/elektro/weerstand.htm Cursus Radiozendamateur 1 DOELSTELLINGEN: Kennis: - Inzicht in de fenomenen spanning, stroom, weerstand en vermogen. - De kleurcodes van

Nadere informatie

Metriek stelsel. b. Grootheden. b-1. Lengte. Uitgangspunt (SI-eenheid): meter ; symbool: m. Gebruikte maten: mm-cm-dm-m-dam-hm-km

Metriek stelsel. b. Grootheden. b-1. Lengte. Uitgangspunt (SI-eenheid): meter ; symbool: m. Gebruikte maten: mm-cm-dm-m-dam-hm-km Inhoudsopgave: a: Inleiding b: Grootheden: (voor het basis-onderwijs) 1. Lengte 2. Oppervlakte 3. Volume, inhoud 4. Massa (vroeger: gewicht) 5. Tijd (voor het voortgezet onderwijs) 6. Temperatuur c. Omrekenregels

Nadere informatie

spiekboek rekenen beter rekenen op de entreetoets van het Cito groep

spiekboek rekenen beter rekenen op de entreetoets van het Cito groep spiekboek rekenen beter rekenen op de entreetoets van het Cito groep 3 COLOFON 3 DiKiBO presenteert het spiekboek complete reken-zakboek rekenen voor groep voor 6 groep 5 & 6 (een uittreksel van DiKiBO

Nadere informatie

1 de jaar 2 de graad (2uur) Naam:... Klas:...

1 de jaar 2 de graad (2uur) Naam:... Klas:... Hoofdstuk 1 : Mechanica 1 de jaar de graad (uur) -1- Naam:... Klas:... 1. Basisgrootheden en hoofdeenheden In de Natuurkunde is het vaak van belang om de numerieke waarde van natuurkundige grootheden te

Nadere informatie

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden.

EXACT- Periode 1. Hoofdstuk Grootheden. 1.2 Eenheden. EXACT- Periode 1 Hoofdstuk 1 1.1 Grootheden. Een grootheid is in de natuurkunde en in de chemie en in de biologie: iets wat je kunt meten. Voorbeelden van grootheden (met bijbehorende symbolen): 1.2 Eenheden.

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Omzetten van eenheden met machten van 10

Omzetten van eenheden met machten van 10 met machten van 10 Naam : Klas : Nummer : -1- Hoofdstuk 1. Voorvoegsels 1. Voorbeelden Zet de volgende eenheden om. a) 54,3 mm 3 naar kubieke kilometer (km 3 ) b) 13,6 hg/cm 3 naar gram per kubieke meter

Nadere informatie

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren

Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren Uren, Dagen, Maanden, Jaren,. Tijd: seconden, minuten, uren, dagen, weken, maanden, jaren 1 minuut 60 seconden 1 uur 60 minuten 1 half uur 30 minuten 1 kwartier 15 minuten 1 dag (etmaal) 24 uren 1 week

Nadere informatie

Onderwijs op maat voor uitdaging en motivering

Onderwijs op maat voor uitdaging en motivering Uitleg: Rekenen met Elektriciteit zegt iets over hoeveel energie het apparaat gaat gebruiken als deze 1s aan staat. Een spanning ontstaat door ladingverschil. (verschil in elektronen tussen polen) Een

Nadere informatie

Onderwijs op maat voor uitdaging en motivering

Onderwijs op maat voor uitdaging en motivering Uitleg: Rekenen met Elektriciteit zegt iets over hoeveel energie het apparaat gaat gebruiken als deze 1s aan staat. Een spanning ontstaat door ladingverschil. (verschil in elektronen tussen polen) Een

Nadere informatie

Mini Handleiding over Elektronica-onderdelen

Mini Handleiding over Elektronica-onderdelen Mini Handleiding over Elektronica-onderdelen Deze handleiding is speciaal geschreven voor kinderen vanaf 10 jaar. Op een eenvoudige manier en in begrijpelijke tekst leer je stapsgewijs wat elk elektronica-onderdeel

Nadere informatie

OPDRACHTKAART. Thema: Multimedia/IT. Audio 4. Digitaliseren MM-02-10-01

OPDRACHTKAART. Thema: Multimedia/IT. Audio 4. Digitaliseren MM-02-10-01 OPDRACHTKAART MM-02-10-01 Digitaliseren Voorkennis: Je hebt Multimedia-opdrachten 1 tot en met 3 en audio-opdracht 1 t/m 3 (MM-02-03 t/m MM-02-09) afgerond. Intro: Geluid dat wij horen is een analoog signaal.

Nadere informatie

Taak: meet de lengte, de breedte en de dikte van je schoolagenda en noteer de resultaten in de tabel:

Taak: meet de lengte, de breedte en de dikte van je schoolagenda en noteer de resultaten in de tabel: Deel 1: Metingen 1.1 Meten Taak: meet de lengte, de breedte en de dikte van je schoolagenda en noteer de resultaten in de tabel: Lengte l (......) Breedte b (......) Dikte d (......) De grootheid wordt

Nadere informatie

Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE

Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE Verkorte versie van de SYLLABUS REKENEN 2F EN 3F (VO en MBO, versie mei 2015) Aanpassing van product van CvTE 1. Inleiding Vanaf 1 oktober 2015 gelden nieuwe afspraken omtrent het rekenexamen 3F. De exameneisen

Nadere informatie

SAMENVATTING BASIS & KADER

SAMENVATTING BASIS & KADER SAMENVATTING BASIS & KADER Afronden Hoe je moet afronden hangt af van de situatie. Geldbedragen rond je meestal af op twee decimalen, 15,375 wordt 15,38. Grote getallen rondje meestal af op duizendtallen,

Nadere informatie

Voorkennis : Breuken en letters

Voorkennis : Breuken en letters Hoofdstuk 1 Getallen en Variabelen (V4 Wis A) Pagina 1 van 13 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x = 12

Nadere informatie

Medische rekenen AJK

Medische rekenen AJK Medische rekenen AJK Herhaling Optellen, aftrekken en breuken Optellen Voorbeeld optellen 122

Nadere informatie

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10

Inhoud. Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 Inhoud Eenheden... 2 Omrekenen van eenheden I... 4 Omrekenen van eenheden II... 9 Omrekenen van eenheden III... 10 1/10 Eenheden Iedere grootheid heeft zijn eigen eenheid. Vaak zijn er meerdere eenheden

Nadere informatie

Uitwerking LES 5 N CURSSUS

Uitwerking LES 5 N CURSSUS 1) C De letter C wordt in de elektronica gebruikt voor een: A) spoel (symbool L, eenheid Henry) B) weerstand (symbool R, eenheid Ohm Ω) C) condensator (symbool C, eenheid Farad, 2 geleiders gescheiden

Nadere informatie

Meetfouten, afronding, voorvoegsels en eenheden

Meetfouten, afronding, voorvoegsels en eenheden Meetfouten, afronding, voorvoegsels en eenheden Meetfouten In de wiskunde werken we meestal met exacte getallen: 2π, 5, 3, 2 log 3. Ook in natuurwetenschappelijke vakken komen exacte getallen voor, maar

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde

8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde 8.1 Herleiden [1] Herleiden bij vermenigvuldigen: -5 3a 6b 8c = -720abc 1) Vermenigvuldigen cijfers (let op teken) 2) Letters op alfabetische volgorde Optellen: 5a + 3b + 2a + 6b = 7a + 9b 1) Alleen gelijksoortige

Nadere informatie

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12

Rekenportfolio. Naam: cm 2. m 3 + = 1 _ 12 Tytsjerksteradiel Rekenportfolio Naam: cm 2 1 5 7 + = 5 10 10 m 3 1 _ 12 X 5 1 + = 5 1 + Inhoudsopgave Voorwoord 3 Domein getallen 4 - Optellen, aftrekken, vermenigvuldigen en delen 5 - Breuken 6 - Rekenvolgorde

Nadere informatie

DIT IS HET DiKiBO-BOEK VAN

DIT IS HET DiKiBO-BOEK VAN Groep 5 6 & 2 DIT IS HET DiKiBO-BOEK VAN TIP PAS OP 2 HOE? hoi, ik ben DiKiBO samen met mijn vrienden help ik jou bij het leren 3 COLOFON DiKiBO presenteert het complete reken-zakboek voor groep 5 & 6

Nadere informatie

Machten van natuurlijke getallen G24. 16 wedstrijden. 4 2 (ieder lid speelt tegen vier tegenstanders = 4 4).

Machten van natuurlijke getallen G24. 16 wedstrijden. 4 2 (ieder lid speelt tegen vier tegenstanders = 4 4). G24 Machten van natuurlijke getallen 303 E Schrijf als een macht. a 5 5 5 =. 5 3..................................................... d.................... =. 6...........................................................

Nadere informatie

Rekentermen en tekens

Rekentermen en tekens Rekentermen en tekens Erbij de som is hetzelfde, is evenveel, is gelijk aan Eraf het verschil, korting is niet hetzelfde, is niet evenveel Keer het product kleiner dan, minder dan; wijst naar het kleinste

Nadere informatie

Onderwijs op maat voor uitdaging en motivering Enkel 1

Onderwijs op maat voor uitdaging en motivering Enkel 1 Uitleg: Rekenen met Elektriciteit Een spanning ontstaat door ladingverschil. (verschil in elektronen tussen polen) Een stroom loopt als er een gesloten stroomkring is. (aantal elektronen per seconde) Weerstand

Nadere informatie

Grootheden, eenheden, voorvoegsels, symbolen

Grootheden, eenheden, voorvoegsels, symbolen Grootheden, eenheden, voorvoegsels, symbolen Afspraken: we kunnen niet zonder Liefst overal hetzelfde Je importeert een Amerikaanse auto. Je rijdt ermee de bebouwde kom binnen, ziet een verkeersbord (50)

Nadere informatie

Thema 0 Bouwstenen Naam Klas. Startdatum / lesnr. cijfer

Thema 0 Bouwstenen Naam Klas. Startdatum / lesnr. cijfer Thema 0 Bouwstenen Naam Klas Startdatum / lesnr cijfer BOUWSTENEN NATUURKUNDE INSTRUCTIE ONDERZOEK Bunsenbrander... 12-13 Proefverslag...6-7 Periodiek systeem... 10-11 Rekenregels...8-9 Voorvoegsels...8-9

Nadere informatie

Hoofdstuk 1: Basisvaardigheden

Hoofdstuk 1: Basisvaardigheden Hoofdstuk 1: Basisvaardigheden Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 1: Basisvaardigheden Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen

Nadere informatie

REKENTECHNIEKEN - OPLOSSINGEN

REKENTECHNIEKEN - OPLOSSINGEN REKENTECHNIEKEN - OPLOSSINGEN 1] 3,52 m + 13,6 cm =? 3,52 m 3,52 m - 2 13,6 cm 0,136 m - 3 3,656 m eindresultaat 3,66 m 2 cijfers na komma en afronden naar boven 3,52 m 352 cm - 0 13,6 cm 13,6 cm - 1 365,6

Nadere informatie

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 2

Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2. Groep 8, blok 1, week 2 Passende Perspectieven, leerroute 2 Groep 8, blok 1, week 1 Passende Perspectieven, leerroute 2 LES 1 LES 2 LES 3 LES 4 LES 5 (hele getallen tot 1000) (meter, decimeter, centimeter, millimeter, kilometer, decameter, hectometer) (begrip kilo)

Nadere informatie

Voorkennis : Breuken en letters

Voorkennis : Breuken en letters Hoofdstuk 1 Rekenregels en Verhoudingen (H4 Wis A) Pagina 1 van 11 Voorkennis : Breuken en letters Les 1 : Breuken Bereken : a. 4 2 3 b. x 5 = c. 12 3 x a. 4 2 3 = 8 3 = 2 2 3 b. x 5 = 1 5 x c. 12 3 x

Nadere informatie

1.Tijdsduur. maanden:

1.Tijdsduur. maanden: 1.Tijdsduur 1 etmaal = 24 uur 1 uur = 60 minuten 1 minuut = 60 seconden 1 uur = 3600 seconden 1 jaar = 12 maanden 1 jaar = 52 weken 1 jaar = 365 (of 366 in schrikkeljaar) dagen 1 jaar = 4 kwartalen 1 kwartaal

Nadere informatie

Decimaliseren. 1.1 Vereenvoudigen 2. 1.2 Verhoudingen omzetten 3. 1.3 Afronden 4. 1.4 Oefeningen 4

Decimaliseren. 1.1 Vereenvoudigen 2. 1.2 Verhoudingen omzetten 3. 1.3 Afronden 4. 1.4 Oefeningen 4 Decimaliseren Samenvatting Decimaliseren is nodig, omdat alle apparaten voor hun instelling een decimaal getal nodig hebben. Bijvoorbeeld: een infuuspomp kan wel op 0,8 ml/min ingesteld worden, maar niet

Nadere informatie

Uitwerkingen Rekenen met cijfers en letters

Uitwerkingen Rekenen met cijfers en letters Uitwerkingen Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 2009 c Swier Garst - RGO Middelharnis 2 Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

1. Opbouw van getallenverzamelingen

1. Opbouw van getallenverzamelingen 1. Opbouw van getallenverzamelingen De natuurlijke getallen Wanneer kinderen voor het eerst gaan tellen, gebeurt dat op een natuurlijke manier. Zij leren de hoofdtelwoorden: een, twee, drie, vier, enzovoort

Nadere informatie

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend

Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Hoofdstuk 5 5A Grote getallen Duizend 3 getallen achter de komma 230 duizend 230 000 46 duizend 46 000 Andersom 345 600 345,6 duizend 24 500 24,5 duizend Miljoen 6 getallen achter de komma 230 miljoen

Nadere informatie

Spiekboekje. Knowledgebridge Onderwijs Hein v.d. Velden

Spiekboekje. Knowledgebridge Onderwijs Hein v.d. Velden Spiekboekje Knowledgebridge Onderwijs Hein v.d. Velden 1 rekenen tot 20 verliefde getallen verliefde getallen zijn samen 10 1+9= 2+8= 3+7= 10 4+6= 5+5= 0+10= 2 getallenlijn 20 + plus 7 + 6= 7 + 3 = 10

Nadere informatie

Impedantie V I V R R Z R

Impedantie V I V R R Z R Impedantie Impedantie (Z) betekent: wisselstroom-weerstand. De eenheid is (met als gelijkstroom-weerstand) Ohm. De weerstand geeft aan hoe goed de stroom wordt tegengehouden. We kennen de formules I R

Nadere informatie

Inleiding in de natuurkunde. 1 Wat is natuurkunde? 2 Grootheden en eenheden 3 Voorvoegsels van eenheden 4 Afronden na vermenigvuldigen en delen

Inleiding in de natuurkunde. 1 Wat is natuurkunde? 2 Grootheden en eenheden 3 Voorvoegsels van eenheden 4 Afronden na vermenigvuldigen en delen Inleiding in de natuurkunde 1 Wat is natuurkunde? 2 Grootheden en eenheden 3 Voorvoegsels van eenheden 4 Afronden na vermenigvuldigen en delen 1 Wat is natuurkunde? Natuur en natuurwetenschappen Kort gezegd

Nadere informatie

Inleiding tot de natuurkunde

Inleiding tot de natuurkunde OBC Inleiding tot de Natuurkunde 01-08-2010 W.Tomassen Pagina 1 Hoofdstuk 1 : Hoe haal ik hoge cijfers. 1. Maak van elke paragraaf een samenvatting. (Titels, vet/schuin gedrukte tekst, opsommingen en plaatsjes.)

Nadere informatie

FYSICA. voor 4 ST & 4 TW. Deze cursus fysica vind je op en op pmi.smartschool.be

FYSICA. voor 4 ST & 4 TW. Deze cursus fysica vind je op  en op pmi.smartschool.be FYSICA voor 4 ST & 4 TW Deze cursus fysica vind je op www.hetwarmewater.tk en op pmi.smartschool.be Fysica - Fysica in 3ST en 3TW! 1 / 1 Fysica in 3 ST & 3 TW Fysica is een wetenschap. Wat is een fysisch

Nadere informatie

STAGEDAG SAM DIEPSTRATEN

STAGEDAG SAM DIEPSTRATEN STAGEDAG SAM DIEPSTRATEN 4-4- 2014 Stagedag Sam Diepstraten Christoffel Breda Sam gaat leren: Deel 1 (+) Hoe een computer er van binnen uitziet. (+) Hoe het systeem is opgebouwd en hoe alles in elkaar

Nadere informatie

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen.

Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Hoofdstuk 5 gaat over rekenen. Deel 2 is eigenlijk herhaling van alle stof. Trainen voor het examen. Het werkt als volgt, Je maakt een opgave bijv. opgave 1. Hoe gaat het ook al weer denk je dan. Nou,

Nadere informatie

Vectoren, matrices en beeld. Figuur: Lena. Albert-Jan Yzelman

Vectoren, matrices en beeld. Figuur: Lena. Albert-Jan Yzelman Vectoren, matrices en beeld Figuur: Lena Vectoren, matrices en beeld Hoe coderen we foto s zodat ze te gebruiken zijn op computers? Wat verwachten we van de bestandsgrootte? Hoe verkleinen we de benodigde

Nadere informatie

Opgave 2 Een spanningsbron wordt belast als er een apparaat op is aangesloten dat (in meer of mindere mate) stroom doorlaat.

Opgave 2 Een spanningsbron wordt belast als er een apparaat op is aangesloten dat (in meer of mindere mate) stroom doorlaat. Uitwerkingen 1 A Een spanningsbron wordt belast als er een apparaat op is aangesloten dat (in meer of mindere mate) stroom doorlaat. Een ideale spanningsbron levert bij elke stroomsterkte dezelfde spanning.

Nadere informatie

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam:

Score. Zelfevaluatie. Beoordeling door de leerkracht. Datum: Klas: Nr: Naam: Datum: Klas: Nr: Naam: Score G1 /5 /5 Opgave 1 G2 / / Opgave 2 G3 /10 /10 Opgave 3 G4 /5 /5 Opgave 4 G5 /4 /4 Opgave 5 G6 /5 /5 G7 /5 /5 G8 /10 /10 G9 /10 /10 G10 /7 /7 G11 /10 /10 Totaal Zelfevaluatie

Nadere informatie

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13

2 REKENEN MET BREUKEN 3. 2.3 Optellen van breuken 6. 2.5 Aftrekken van breuken 9. 2.7 Vermenigvuldigen van breuken 11. 2.9 Delen van breuken 13 REKENEN MET BREUKEN. De breuk. Opgaven. Optellen van breuken 6. Opgaven 8. Aftrekken van breuken 9.6 Opgaven 9.7 Vermenigvuldigen van breuken.8 Opgaven.9 Delen van breuken.0 Opgaven. Een deel van een deel.

Nadere informatie

Technische Universiteit

Technische Universiteit SBD 9756a 98-0-28, niv 5 A/B REKENTECHNIEKEN Technische Universiteit Eindhoven Centrum Stralingsbescherming en Dosimetrie Stralingsbeschermingsdienst Inleiding Voor het uitvoeren van berekeningen in het

Nadere informatie

Uitwerkingen opgaven hoofdstuk 1

Uitwerkingen opgaven hoofdstuk 1 Uitwerkingen opgaven hoofdstuk 1 1. Grootheden en eenheden Opgave 1 Opgave Opgave Opgave 4 Opgave 5 a De afstand tot een stoplicht om nog door groen te kunnen fietsen. b Als je linksaf wilt slaan moet

Nadere informatie

Mediawijsheid wat zit er in mijn computer?

Mediawijsheid wat zit er in mijn computer? Mediawijsheid wat zit er in mijn computer? blz 1 Harde schijf HD CD/DVD/blueray lezer/schrijver Floppy disk FD Bus CPU Invoer en uitvoer apparaten Vast geheugen ROM Werkgeheugen RAM In de PC zitten de

Nadere informatie

handelingswijzer rekenen

handelingswijzer rekenen handelingswijzer rekenen Naslagwerk Voor leerlingen en ouders HANDELINGSWIJZER REKENEN INHOUD HANDELINGSWIJZER REKENEN... 1 1 INHOUD... 1 HOOFDBEWERKINGEN... 2 OPTELLEN... 3 AFTREKKEN... 3 VERMENIGVULDIGEN...

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Rekenen met cijfers en letters

Rekenen met cijfers en letters Rekenen met cijfers en letters Maerlant College Brielle 5 oktober 009 c Swier Garst - RGO Middelharnis Inhoudsopgave Rekenen met gehele getallen 7. De gehele getallen.....................................

Nadere informatie

Rekenmachine. Willem-Jan van der Zanden

Rekenmachine. Willem-Jan van der Zanden Rekenmachine Vanaf hoofdstuk 5 mag je bij wiskunde bij bepaalde hoofdstukken een eenvoudige rekenmachine gebruiken; Als je nog geen rekenmachine hebt, koop dan een CASIO fx; Heb je al een rekenmachine

Nadere informatie

Reken zeker: leerlijn kommagetallen

Reken zeker: leerlijn kommagetallen Reken zeker: leerlijn kommagetallen De gebruikelijke didactische aanpak bij Reken Zeker is dat we eerst uitleg geven, vervolgens de leerlingen flink laten oefenen (automatiseren) en daarna het geleerde

Nadere informatie

Experiment: Meet de lengte, de breedte en de dikte van je schoolagenda en noteer de resultaten in onderstaande tabel:

Experiment: Meet de lengte, de breedte en de dikte van je schoolagenda en noteer de resultaten in onderstaande tabel: Deel 2: Metingen 2.1 Meten Experiment: Meet de lengte, de breedte en de dikte van je schoolagenda en noteer de resultaten in onderstaande tabel: Lengte (......) Breedte (......) Dikte (......) De grootheid

Nadere informatie

Ken en begrijp je energiegebruik Leer om te gaan met de begrippen en eenheden

Ken en begrijp je energiegebruik Leer om te gaan met de begrippen en eenheden Ken en begrijp je energiegebruik Leer om te gaan met de begrippen en eenheden Rekenen met Energie Vragen en antwoorden over energie en besparingen voor VVE 010 22 juni 2017 Frans Debets www.debetsbv.nl

Nadere informatie

Kijk na! Dierenmanieren

Kijk na! Dierenmanieren De wereld in getallen 4 Lessuggestie groep 7 Handleiding Omschrijving Werkbladen voor groep 7B. Ze sluiten aan bij de minimumtoets en projecttoets van blok 3. De kinderen oefenen: schrijfwijze van getallen

Nadere informatie

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A.

In het internationale eenhedenstelsel, ook wel SI, staan er negen basisgrootheden met bijbehorende grondeenheden. Dit is BINAS tabel 3A. Grootheden en eenheden Kwalitatieve en kwantitatieve waarnemingen Een kwalitatieve waarneming is wanneer je meet zonder bijvoorbeeld een meetlat. Je ziet dat een paard hoger is dan een muis. Een kwantitatieve

Nadere informatie

Hoofdstuk 6: Digitale signalen

Hoofdstuk 6: Digitale signalen Hoofdstuk 6: Digitale signalen 6. Algemeenheden Het decimale talstelsel is het meest gebruikte talstelsel om getallen voor te stellen. Hierin worden symbolen gebruikt ( t.e.m. 9 ) die ondubbelzinning de

Nadere informatie

Lessen in Elektriciteit

Lessen in Elektriciteit Lessen in Elektriciteit Door: Gaby Sondagh en Isabel Duin Eckartcollege Tegenwoordig kunnen we niet zonder elektriciteit. Het licht in de klas, de computers waar je op werkt en allerlei andere apparaten

Nadere informatie

Rekenen aan wortels Werkblad =

Rekenen aan wortels Werkblad = Rekenen aan wortels Werkblad 546121 = Vooraf De vragen en opdrachten in dit werkblad die vooraf gegaan worden door, moeten schriftelijk worden beantwoord. Daarbij moet altijd duidelijk zijn hoe de antwoorden

Nadere informatie

TOELICHTING METRIEK STELSEL

TOELICHTING METRIEK STELSEL TOELICHTING METRIEK STELSEL 2 3 642_rv_wb_metriek_stelsel_bw.indd 2 8-03-3 23: liter ml 00 4 5 6 642_rv_wb_metriek_stelsel_bw.indd 3 8-03-3 23: Rekenvlinder Metriek stelsel Toelichting Uitgeverij Zwijsen

Nadere informatie

3.1 Haakjes wegwerken [1]

3.1 Haakjes wegwerken [1] 3.1 Haakjes wegwerken [1] Oppervlakte rechthoek (Manier 1): Opp. = l b = (a + b) c = (a + b)c Oppervlakte rechthoek (Manier 2): Opp. = Opp. Groen + Opp. Rood = l b + l b = a c + b c = ac + bc We hebben

Nadere informatie

De Blu-ray Disc. Uitwerkingen opgaven. Een vakoverstijgende opdracht voor 5 havo en 5/6 vwo. Jean Schleipen Philips Research, Eindhoven

De Blu-ray Disc. Uitwerkingen opgaven. Een vakoverstijgende opdracht voor 5 havo en 5/6 vwo. Jean Schleipen Philips Research, Eindhoven Een vakoverstijgende opdracht voor 5 havo en 5/6 vwo (natuurkunde, wiskunde, elektrotechniek, meet- en regeltechniek) Jean Schleipen Philips Research, Eindhoven Opgave 2 = x 2 3 + x 2 2 + x 2 + x 2 = 4

Nadere informatie

Elementaire rekenvaardigheden

Elementaire rekenvaardigheden Hoofdstuk 1 Elementaire rekenvaardigheden De dingen die je niet durft te vragen, maar toch echt moet weten Je moet kunnen optellen en aftrekken om de gegevens van de patiënt nauwkeurig bij te kunnen houden.

Nadere informatie

Die moeilijke decibels.

Die moeilijke decibels. Die moeilijke decibels. Hoe werkt het en hoe moet ik er mee rekenen? PA FWN Met potlood en papier Er wordt zoveel mogelijk een rekenmethode toegepast, welke door zijn eenvoud met een simpele rekenmachine

Nadere informatie

klas 2-3 - 4 "Eenheden"

klas 2-3 - 4 Eenheden Naam: klas 2-3 - 4 "Eenheden" Klas: Het woord eenheid betekent dat dingen hetzelfde zijn. In de natuurkunde, scheikunde en techniek kan van alles gemeten worden. Iedereen kan elkaars metingen pas gebruiken

Nadere informatie

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN

Klok dag en nacht. Hulpkaart OPTELLEN/AFTREKKEN OPTELLEN/AFTREKKEN Zet de getallen onder elkaar in je schrift eerst zelf proberen uit te rekenen bij aftrekken: denk om lenen bij optellen: denk om doorschuiven geen vergissingen? bij lang nadenken: rekenmachine

Nadere informatie

Bloemlezing uit 36 bladzijden voor een eerste indruk. inzicht in het complete metriek stelsel. Op een eenduidige

Bloemlezing uit 36 bladzijden voor een eerste indruk. inzicht in het complete metriek stelsel. Op een eenduidige Meten is weten Bloemlezing uit 36 bladzijden voor een eerste indruk Leer- Meten en is oefenboek weten Bloemlezing metriek uit stelsel 36 bladzijden voor ISBN: een 978-90-821249-1-0 eerste indruk Auteur

Nadere informatie

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden

Getallen 1F Doelen Voorbeelden 2F Doelen Voorbeelden A Notatie en betekenis - Uitspraak, schrijfwijze en betekenis van, symbolen en relaties - Wiskundetaal gebruiken - de relaties groter/kleiner dan - breuknotatie met horizontale streep - teller, noemer,

Nadere informatie

Domeinen:: Algebra en tellen, Verbanden en Veranderingen (ont)wikkelen

Domeinen:: Algebra en tellen, Verbanden en Veranderingen (ont)wikkelen (ont)wikkelen Vwo C Domeinen:: Algebra en tellen, Verbanden en Veranderingen (ont)wikkelen Inhoud Vouwen Groeien Vergroten/verkleinen Vermenigvuldigen en delen met opa (logaritmen) Logaritmische schaalverdeling

Nadere informatie

Hoe schrijf je de logaritmische waarden welke bij db s horen?

Hoe schrijf je de logaritmische waarden welke bij db s horen? Die moeilijke decibellen toch. PA0 FWN. Inleiding. Ondanks dat in Electron al vaak een artikel aan decibellen is geweid, en PA0 LQ in het verleden al eens een buitengewoon handige tabel publiceerde waar

Nadere informatie

8. Bussystemen. 8.1 Wat is een bus?

8. Bussystemen. 8.1 Wat is een bus? 8. Bussystemen 8.1 Wat is een bus? In de electronica is een bus een verzamelpunt voor soortgelijke elektronische signalen. Deze centralisering heeft tot doel, het aantal verbindingen tussen diverse schakelingen

Nadere informatie

Rekenen met Energie. Vragen en antwoorden over energie en besparing voor. 5 november Frans Debets.

Rekenen met Energie. Vragen en antwoorden over energie en besparing voor. 5 november Frans Debets. Rekenen met Energie Vragen en antwoorden over energie en besparing voor 5 november 2016 Frans Debets www.debetsbv.nl Energie Besparen Waarom wil je dat? Hoe pak je het aan? Kosten besparen; Waarde verkoopbaarheid

Nadere informatie

In te vullen tabellen.

In te vullen tabellen. In te vullen tabellen. Basisprincipes Binair rekenen: omzettingen: decimaal --> hexadecimaal Stel (40)10 = (?)16 40 16-32 2 16 8-0 0 2 =(28) 16 Binair rekenen: omzettingen: binair --> hexadecimaal Stel

Nadere informatie

Toets gecijferdheid maart 2004

Toets gecijferdheid maart 2004 Toets gecijferdheid maart 2004 Naam: Datum: Klas: score cijfer Algemene aanwijzingen: - Noteer alle berekeningen en oplossingen in dit boekje - Blijf niet te lang zoeken naar een oplossing - Denk aan de

Nadere informatie

tafels van 6,7,8 en 9 X

tafels van 6,7,8 en 9 X tafels van 6,7,8 en 9 X 6 7 8 9 6 36 42 48 54 7 42 49 56 63 8 48 56 64 72 9 54 63 72 81 1 alle tafels X 1 2 3 4 5 6 7 8 9 10 1 1 2 3 4 5 6 7 8 9 10 2 2 4 6 8 10 12 14 16 18 20 3 3 6 9 12 15 18 21 24 27

Nadere informatie

Wettelijke Eenheden. volgens NBN C 03-001 (1984)

Wettelijke Eenheden. volgens NBN C 03-001 (1984) Pagina 1 Wettelijke Eenheden volgens NBN C 03-001 (1984) J. Rutten A. Struyven Begeleider Mechanica Begeleider Elektriciteit-Elektronica van het Aartsbisdom van het Aartsbisdom Mechelen- Brussel Mechelen-

Nadere informatie

Schaal. Met behulp van de werkelijke grootte en de afgebeelde grootte kun je de schaal berekenen.

Schaal. Met behulp van de werkelijke grootte en de afgebeelde grootte kun je de schaal berekenen. Schaal Hieronder staat een afbeelding van het raam van het van Gogh-museum waardoor een inbreker zou zijn ontsnapt. Een advocaat voert aan dat door het gat in de ruit zijn client niet heeft kunnen ontsnappen,

Nadere informatie

Natuurkundeles 8 januari 2007, 6 e uur (13.30-14.20 uur), klas 2a2 (2 vwo) 1 e les. 2a2, 26 leerlingen, 15 meisjes en 11 jongens.

Natuurkundeles 8 januari 2007, 6 e uur (13.30-14.20 uur), klas 2a2 (2 vwo) 1 e les. 2a2, 26 leerlingen, 15 meisjes en 11 jongens. Natuurkundeles 8 januari 2007, 6 e uur (13.30-14.20 uur), klas 2a2 (2 vwo) 1 e les ent: Klas: Onderwerp: Materialen: Lokaal: Bord: Man 2a2, 26 leerlingen, 15 meisjes en 11 jongens. Significante cijfers.

Nadere informatie

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen

Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Nu een leuk stukje wiskunde ter vermaak (hoop ik dan maar). Optellen van oneindig veel getallen Ter inleiding: tellen Turven, maar: onhandig bij grote aantallen. Romeinse cijfers: speciale symbolen voor

Nadere informatie

Werkblad havo 4 natuurkunde Basisvaardigheden

Werkblad havo 4 natuurkunde Basisvaardigheden Werkblad havo 4 natuurkunde Basisvaardigheden Grootheden en eenheden Bij het vak natuurkunde spelen grootheden en eenheden een belangrijke rol. Wat dat zijn, grootheden en eenheden? Een grootheid is een

Nadere informatie

Voorbeelden van geluid die voor mensen erg belangrijk zijn: - voor onderlinge communicatie (spraak en gehoor) - als waarschuwingssignaal (claxon van

Voorbeelden van geluid die voor mensen erg belangrijk zijn: - voor onderlinge communicatie (spraak en gehoor) - als waarschuwingssignaal (claxon van Wat is GELUID Voorbeelden van geluid die voor mensen erg belangrijk zijn: - voor onderlinge communicatie (spraak en gehoor) - als waarschuwingssignaal (claxon van een auto, een overweg, een brandalarm)

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE

TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE @! TECHNISCHE UNIVERSITEIT EINDHOVEN FACULTEIT DER TECHNISCHE NATUURKUNDE Tentamen Computers bij fysische experimenten (3BB0) op donderdag 3 november 006, 10:30-1:00 Het tentamen duurt 90 minuten en wordt

Nadere informatie

Activiteit 1. Tel de punten Binaire Getallen. Samenvatting. Kerndoelen. Vaardigheden. Leeftijd. Materiaal

Activiteit 1. Tel de punten Binaire Getallen. Samenvatting. Kerndoelen. Vaardigheden. Leeftijd. Materiaal Activiteit 1 Tel de punten Binaire Getallen Samenvatting Data in de computer worden opgeslagen als een serie van nullen en enen. Hoe kunnen we woorden en getallen weergeven met alleen deze twee symbolen?

Nadere informatie

REKENMODULE INHOUD. Rekenen voor vmbo-groen en mbo-groen

REKENMODULE INHOUD. Rekenen voor vmbo-groen en mbo-groen REKENMODULE INHOUD Rekenen voor vmbo-groen en mbo-groen Colofon RekenGroen. Rekenen voor vmbo- groen en mbo- groen Extra Rekenmodule Inhoud Leerlingtekst Versie 1.0. November 2012 Auteurs: Mieke Abels,

Nadere informatie

Voorkennis getallenverzamelingen en algebra. Introductie 213. Leerkern 214

Voorkennis getallenverzamelingen en algebra. Introductie 213. Leerkern 214 Open Inhoud Universiteit Appendix A Wiskunde voor milieuwetenschappen Voorkennis getallenverzamelingen en algebra Introductie Leerkern Natuurlijke getallen Gehele getallen 8 Rationele getallen Machten

Nadere informatie

Hoofdstuk 1 - Rekenen

Hoofdstuk 1 - Rekenen ladzijde 2 a 7 Marel vindt 32,7 326 werknemers en Cas vindt 329 werknemers. Het antwoord van Cas is het nauwkeurigst. deel van 987 =, dus er komen werknemers lopend of met de fiets. Met de auto komen 987

Nadere informatie