a. De hoogte van een toren bepalen met behulp van een stok

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "a. De hoogte van een toren bepalen met behulp van een stok"

Transcriptie

1 Gelijkvormigheid in de 17 de - en 18 de -eeuwse landmeetkunde Heb jij enig idee hoe hoog dat gebouw of die boom is die je uit het raam van je klaslokaal ziet? Misschien kun je de hoogte goed schatten, maar misschien kun je ook wel een manier bedenken om de hoogte exact te berekenen. Of kun je de afstand tot de overkant van de straat of het schoolplein bepalen? En hoe zit dat met de breedte van een rivier? Dit zijn praktische problemen waar 17 de - en 18 de -eeuwse landmeters zich vroeger mee bezig hielden. In de volgende opdrachten nemen we je een aantal eeuwen terug in de tijd en verplaatsen we ons in het leven en het werk van Nederlandse landmeters uit die tijd. Je zult steeds werken met gelijkvormige driehoeken. Verder zul je ook kennis maken met een aantal meetkundige instrumenten die het bepalen van de hoogte eenvoudiger maakten. a. De hoogte van een toren bepalen met behulp van een stok Het eerste probleem dat we bekijken, komt uit een wiskundeboek dat speciaal voor ingenieurs en landmeters is geschreven. Het boek is in 1744 verschenen en was de 2 de druk van de Werkdadige Meetkonst van Johannes Morgenster. De eerste druk is van Morgenster had dit boek speciaal voor zijn leerlingen laten drukken. Allereerst beschrijft Morgenster welk werk de landmeter moet doen voordat hij aan de berekeningen kan beginnen. In de 18 de eeuw was het Nederlandse schrift nog niet zoals wij het nu kennen, dus je zult misschien eerst een beetje moeten wennen aan het Oudnederlands. De taal is nog wel te herkennen als Nederlands, maar de spelling, grammatica en woordkeuze zijn heel anders dan tegenwoordig. Voor je aan deze opgave gaat beginnen, krijg je eerst een paar algemene regels die je kunnen helpen bij het maken van een vertaling: zelfstandig naamwoorden worden met een hoofdletter geschreven de letter 's' wordt als een 'f' gespeld soms wordt een 't' gespeld waar we nu een 'd' schrijven in plaats van 'ch' wordt een 'g' geschreven sommige werkwoorden worden anders vervoegd (b.v. 'kont' is kunt en 'afgeveerdigt' is afgewerkt) de zinnen zijn langer (veel komma's, puntkomma's en dubbele punten) men gebruikt een naamval (des = van de) 1. Herformuleer de opgave in modern Nederlands. 2. Bekijk de figuur die Morgenster gebruikt en maak hiervan een schets in je werkschrift. Geef de letters bij de hoekpunten van de driehoeken duidelijk weer. 1

2 3. Waarom zijn de driehoeken AED en BEC gelijkvormig? 4. Welke metingen moet de landmeter uitvoeren volgens de opgave? Tijdens het veldwerk worden de volgende maten opgemeten: In de 18 de eeuw rekenden de landmeters nog niet in centimeters en meters, maar in voeten. Deze voet was een standaardmaat van 31,4 cm. Nu kan de hoogte van de toren worden bepaald. Morgenster beschrijft dit in het kort als volgt: 5. Laat aan de hand van een berekening zien hoe Morgenster aan zijn antwoord komt. b. Het bepalen van de breedte van een gracht of rivier Een tweede probleem uit de Werkdadige Meetkonst van Johannes Morgenster behandelt het berekenen van de breedte van een gracht of een rivier. Door gebruik te maken van gelijkvormige driehoeken kan de landmeter gewoon aan wal blijven. Na het benodigde veldwerk verkrijgt hij onderstaande schets: 1. Neem de figuur over in je werkschrift. Zet de belangrijke letters erbij. 2. Welk veldwerk heeft de landmeter moeten doen om de figuur te krijgen? Hoe is hij aan de punten gekomen? De landmeter meet vervolgens de volgende maten op: DE = 20, BC = 5 en CE = 8, waarbij de afstanden zijn gegeven in roeden (een roede is 10 voeten). 3. Om de breedte van de gracht of rivier te berekenen kan de landmeter nu gebruik maken van de gelijkvormigheid van twee driehoeken. Van welke? 4. Bereken de breedte van de rivier. 2

3 c. De schaduw door zonnelicht als hulpmiddel Een andere oude bekende methode om de hoogte van een toren te berekenen is met behulp van de schaduw door zonnelicht. Waar Morgenster bij de vorige twee voorbeelden mooie plaatjes gaf, geeft hij nu alleen maar een stukje tekst. 1. Maak nu zelf een schets bij dit veldwerk. Teken de toren met schaduw en de stok met schaduw. Morgenster schrijft ook een getallenvoorbeeld op in zijn boek: 2. Wat betekent: Men neme tot een exempel? 3. Bereken dan de hoogte van de toren. d. Het gebruik van de Jacobsstaf De Jacobsstaf is een winkelhaak met ongelijke benen. Het horizontale been van de Jacobsstaf noemen we de dwarsstok, het verticale been de wijzer. De Jacobsstaf was in de 17 de eeuw een handig hulpmiddel om o.a. de hoogte van gebouwen te bepalen. 1. Probeer zelf te verzinnen hoe je een Jacobsstaf kan gebruiken om de hoogte van een gebouw te bepalen. Je mag hierbij veronderstellen dat je de afmetingen van de Jacobsstaf en de afstand van jouw positie tot het gebouw kent. Petrus Ramus, een Franse wiskundige uit de 16 e eeuw, gaf in zijn boek een uitgebreide beschrijving van de Jacobsstaf. In 1622 is zijn boek in het Nederlands vertaald. In deze vertaling vinden we de volgende opgave. 3

4 2. Maak een tekening waarin je alle gemeten maten duidelijk aangeeft. 3. Welke driehoeken zijn gelijkvormig? 4. Laat met behulp van een berekening zien dat de te berekenen hoogte inderdaad 72 voeten is. 5. Wat is de hoogte van het hele gebouw? Ramus doet een verwijzing naar de Gulden Regel en het 9 de beginsel (een soort regel) van het 7 de boek om te laten zien dat zijn antwoord gerechtvaardigd is. 6. Wat denk je dat er in dit beginsel staat? En met welke rekenmethode kun je de Gulden Regel vergelijken? e. De hoogte van een gebouw bepalen met een spiegel De Amsterdamse rekenmeester Cardinael schreef omstreeks 1612 een boekje met praktische oefeningen: Hondert geometrische questien en hare solutien. Bij de opgaven uit dit boekje moet je telkens een lengte van een lijnstuk zoeken als andere lengten gegeven zijn. We werken hieronder een voorbeeld uit. Veronderstel dat je de hoogte wilt bepalen van een gebouw dat je niet kan benaderen. Cardinael gebruikte hierbij de volgende tekening: 4

5 [ DE ] stelt een landmeter voor die in C een spiegel heeft gelegd. Vanuit E kan hij de top A van de toren zien in de spiegel. De afstand BC kan de landmeter niet meten, omdat de toren onbereikbaar is vanuit C. Om de hoogte van de toren te berekenen, voert de landmeter eerst het volgende veldwerk uit: Hij meet de afstand van de spiegel (C) tot de plaats waar hij oorspronkelijk stond ( D ): 8 voeten. Hij past deze afstand af aan de andere kant. Dit levert hem het punt G op. Hij zoekt het snijpunt van de rechte AE met de grond. Dit punt noemt hij F. Hij meet de afstand van D tot F : 9 voeten. Uiteraard kent de landmeter ook zijn eigen lengte. Die bedraagt 6 voeten. Bovendien kent hij uit de fysica een wet die zegt dat, als je in een spiegel kijkt, de hoek van inval gelijk is aan de hoek van terugkaatsing. 1. Neem de figuur van Cardinael over in je werkschrift. Duid de belangrijkste letters aan. 2. Omschrijf met die letters de opgemeten lengten en geef aan welke hoeken even groot zijn. Duid deze gegevens ook aan op je tekening. We zoeken een methode om AB te vinden. 3. Waarom is ABC gelijkvormig met EDG? Uit deze gelijkvormige driehoeken kunnen we afleiden dat AC AB = ED. EG 4. Verklaar deze formule. Van het rechterlid van deze formule is enkel ED gekend. Als we AB willen berekenen, moeten we dus AC EG kunnen uitdrukken met gekende lengten. 5. De lijnstukken [ AC ] en [ EG ] zijn overeenkomstige zijden van de gelijkvormige driehoeken en EDG. Van welke twee andere gelijkvormige driehoeken zijn [ AC ] en [ ] overeenkomstige zijden? Verklaar waarom deze driehoeken gelijkvormig zijn. 6. Aan welke verhouding van gekende lengten is AC 7. Bereken dan de hoogte van de toren. EG dan gelijk? ABC EG ook 5

Toelichting en lesplanning bij groepswerk gelijkvormigheid voor klas 9B (havogroep)

Toelichting en lesplanning bij groepswerk gelijkvormigheid voor klas 9B (havogroep) Toelichting en lesplanning bij groepswerk gelijkvormigheid voor klas 9B (havogroep) Deze week gaan we groepswerk over gelijkvormigheid. De groepsindeling is als volgt: Boudewijn Kjell Pepijn Synne Tom

Nadere informatie

Zeventiende eeuw in Nederland

Zeventiende eeuw in Nederland Zeventiende eeuw in Nederland Rond 1600 was er in Nederland (nauwkeuriger gezegd: in De Nederlanden) een grote behoefte aan praktisch opgeleide wiskundigen. De Nederlanden waren in oorlog met Spanje, dus

Nadere informatie

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen

Wiskunde oefentoets hoofdstuk 10: Meetkundige berekeningen Wiskunde oefentoets hoofdstuk 0: Meetkundige berekeningen Iedere antwoord dient gemotiveerd te worden, anders worden er geen punten toegekend. Gebruik van grafische rekenmachine is toegestaan. Succes!

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want ANALYTISCHE MEETKUNDE: HERHALING DERDE JAAR OEFENINGEN Lees eerst de formules op het andere blad, en los vervolgens de oefeningen van het bijbehorende deel op. Wanneer je alles hebt opgelost, maak je de

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

PROBLEEMOPLOSSEND DENKEN MET

PROBLEEMOPLOSSEND DENKEN MET PROBLEEMOPLOSSEND DENKEN MET Van onderzoekend leren naar leren onderzoeken in de tweede en derde graad Luc Gheysens DPB-Brugge 2012 PROBLEEM 1 Stelling van Pythagoras en gelijkvormige driehoeken Hieronder

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B1,2. tijdvak 2 woensdag 18 juni 13.30-16.30. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 008 tijdvak woensdag 18 juni 13.30-16.30 wiskunde B1, Bij dit examen hoort een uitwerkbijlage. it examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 81 punten te behalen. Voor elk

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur

Examen HAVO. wiskunde B (pilot) tijdvak 1 woensdag 20 mei 13.30-16.30 uur Eamen HAV 2015 1 tijdvak 1 woensdag 20 mei 13.30-16.30 uur wiskunde B (pilot) Dit eamen bestaat uit 16 vragen. Voor dit eamen zijn maimaal 76 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO. wiskunde B. tijdvak 2 woensdag 24 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 009 tijdvak woensdag 4 juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

TIP: om het tellen te vergemakkelijken, tel niet elka maal je een been verplaatst, maar enkel als je je linkerbeen verplaatst.

TIP: om het tellen te vergemakkelijken, tel niet elka maal je een been verplaatst, maar enkel als je je linkerbeen verplaatst. 7. Schatten 1. Inleiding (teervoet) 2. De pas kennen & de tijd schatten (teervoet) 3. Bepalen van hoogtes en breedtes 4.1 De breedte bepalen 4.1.1 methode van de steen 4.1.2 Methode van de driehoeken 4.1.3

Nadere informatie

2.1 Cirkel en middelloodlijn [1]

2.1 Cirkel en middelloodlijn [1] 2.1 Cirkel en middelloodlijn [1] Hiernaast staat de cirkel met middelpunt M en straal 2½ cm In het kort: (M, 2½ cm) Op de zwarte cirkel liggen alle punten P met PM = 2½ cm In het rode binnengebied liggen

Nadere informatie

Werkwinkel 9 Wiskundepracticum. Studenten lerarenopleiding Katho en Khbo

Werkwinkel 9 Wiskundepracticum. Studenten lerarenopleiding Katho en Khbo Werkwinkel 9 Wiskundepracticum Studenten lerarenopleiding Katho en Khbo Kortrijk Zaterdag 24 november 2007 Inhoudsopgave: 1 Verantwoording...2 2 Hoe boeiend kan het zijn...3 3 Wat je moet weten voor de

Nadere informatie

Voorbereiding : examen meetkunde juni - 1 -

Voorbereiding : examen meetkunde juni - 1 - Voorbereiding : examen meetkunde juni - 1 - De driehoek : Congruentiekenmerken van een driehoek kennen Soorten lijnen in een driehoek kennen Bissectricestelling kennen Stelling van het zwaartelijnstuk

Nadere informatie

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken).

P is nu het punt waarvan de x-coördinaat gelijk is aan die van het punt X en waarvan de y-coördinaat gelijk is aan AB (inclusief het teken). Inhoud 1. Sinus-functie 1 2. Cosinus-functie 3 3. Tangens-functie 5 4. Eigenschappen 4.1. Verband tussen goniometrische verhoudingen en goniometrische functies 8 4.2. Enkele eigenschappen van de sinus-functie

Nadere informatie

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur

Examen HAVO. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur Examen HVO 2013 tijdvak 2 woensdag 19 juni 13.30-16.30 uur wiskunde B Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Hoofdstuk 6 : Projectie en Stelling van Thales

Hoofdstuk 6 : Projectie en Stelling van Thales Hoofdstuk 6 : Projectie en Stelling van Thales - 127 1. Projectie op een rechte (boek pag 175) x en y zijn twee... rechten. We trekken door het punt A een evenwijdige rechte met de rechte y en noemen het

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

1 Middelpunten. Verkennen. Uitleg

1 Middelpunten. Verkennen. Uitleg 1 Middelpunten Verkennen Middelpunten Inleiding Verkennen Probeer vanuit drie gegeven punten (niet op één lijn) die op een cirkel moeten liggen het middelpunt van die cirkel te construeren. Je kunt hem

Nadere informatie

Open het programma Geogebra. Het beginscherm verschijnt. Klik voordat je verder gaat met je muis ergens in het

Open het programma Geogebra. Het beginscherm verschijnt. Klik voordat je verder gaat met je muis ergens in het Practicum I Opgave 1 Tekenen van een driehoek In de opgave gaan we op twee verschillende manieren een driehoek tekenen. We doen dit door gebruik te maken van de werkbalk (macrovenster) en van het invoerveld.

Nadere informatie

2.1 Gelijkvormige driehoeken[1]

2.1 Gelijkvormige driehoeken[1] 2.1 Gelijkvormige driehoeken[1] 5 25 50 100 25 125 250 x Hierboven staat een verhoudingstabel. Kruiselings vermenigvuldigen van de getallen geeft: 5 x 125 = 25 x 25 (= 625) 5 x 250 = 25 x 50 (= 1250) 25

Nadere informatie

5.1 Punten, lijnen en vlakken [1]

5.1 Punten, lijnen en vlakken [1] 5.1 Punten, lijnen en vlakken [1] Snijdende lijnen hebben een snijpunt. De snijdende lijnen FH en EG liggen in het vlak EFGH. Snijdende lijnen liggen altijd in één vlak. Een vlak is altijd plat en heeft

Nadere informatie

Eindexamen wiskunde B1-2 havo 2008-II

Eindexamen wiskunde B1-2 havo 2008-II Koffiekan Bij het zetten van koffie wordt soms een koffiezetapparaat gebruikt. eze opgave gaat over een koffiezetapparaat waarbij de koffiekan, zonder het handvat en de bovenrand, de vorm heeft van een

Nadere informatie

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE RU 2006 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Viervlakken. Op een tafel vóór je staan vier viervlakken V 1, V 2, V 3 en V 4. Op elk grensvlak

Nadere informatie

Pienter 1ASO Extra oefeningen hoofdstuk 7

Pienter 1ASO Extra oefeningen hoofdstuk 7 Extra oefeningen hoofdstuk 7: Vlakke figuren 1 Teken binnen een cirkel met straal 6 cm een tweede cirkel met straal 2 cm. Wat is de kleinste en wat is de grootst mogelijke afstand tussen beide middelpunten?

Nadere informatie

De Cirkel van Apollonius en Isodynamische Punten

De Cirkel van Apollonius en Isodynamische Punten januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand

Nadere informatie

Biljarten op een ellips. Lab kist voor 3-4 vwo

Biljarten op een ellips. Lab kist voor 3-4 vwo Biljarten op een ellips Lab kist voor 3-4 vwo Dit lespakket behoort bij het ellipsvormige biljart van de ITS Academy. Ontwerp: Pauline Vos, in opdracht van Its Academy Juni 2011 Leerdoelen: - kennismaken

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld.

Met behulp van deze gegevens kan worden berekend welke maximale totale behoefte aan elektrische energie in Nederland er voor 2050 wordt voorspeld. Windenergie Er wordt steeds meer gebruikgemaakt van windenergie. Hoewel de bijdrage van windenergie nu nog klein is, kan windenergie in de toekomst een grote bijdrage aan onze elektriciteitsvoorziening

Nadere informatie

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2.

Bal in de sloot. Hierbij zijn x en f ( x ) in centimeters. Zie figuur 2. Bal in de sloot Een bal met een straal van cm komt in een figuur sloot terecht en blijft drijven. Het laagste punt van de bal bevindt zich h cm onder het wateroppervlak. In figuur zie je een doorsnede

Nadere informatie

blikken b dat nodig is voor de toren. Op de uitwerkbijlage staat een tabel, die hoort bij dit verband. Vul de tabel op de uitwerkbijlage verder in.

blikken b dat nodig is voor de toren. Op de uitwerkbijlage staat een tabel, die hoort bij dit verband. Vul de tabel op de uitwerkbijlage verder in. Blikken stapelen Sander gaat blikken stapelen op dezelfde manier als op de foto hieronder. Hierdoor krijgt hij een toren die bestaat uit een aantal lagen. Op de foto zie je een toren die bestaat uit 5

Nadere informatie

Object 1:

Object 1: Project Wiskunde & Schoonheid Wat is schoonheid? En waarom vinden we bepaalde dingen mooi? Wat is de Gulden Snede? En wat heeft die te maken met de Fibonacci-rij? Wat heeft wiskunde met schoonheid te maken?

Nadere informatie

Kaas. foto 1 figuur 1. geheel aantal cm 2.

Kaas. foto 1 figuur 1. geheel aantal cm 2. Kaas Op foto 1 zie je drie stukken kaas. Het zijn delen van een hele, ronde kaas. Het grootste stuk is precies de helft van een hele kaas. Deze halve kaas heeft een vlakke zijkant. De vorm van de vlakke

Nadere informatie

Efficientie in de ruimte - leerlingmateriaal

Efficientie in de ruimte - leerlingmateriaal Junior College Utrecht Efficientie in de ruimte - leerlingmateriaal Versie 2 September 2012 Een project (ruimte-)meetkunde voor vwo-leerlingen Geschreven voor het Koningin Wilhelmina College Culemborg

Nadere informatie

Aan de gang. Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u

Aan de gang. Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u Aan de gang Wiskunde B-dag 2015, vrijdag 13 november, 9:00u-16:00u Verkenning 1 (Piano) Je moet een zware piano verschuiven door een 1 meter brede gang met een rechte hoek er in. In de figuur hierboven

Nadere informatie

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje

Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Oefenexamen wiskunde vmbo-tl Onderwerp: meetkunde H2 H6 H8 Antwoorden: achterin dit boekje Indien van toepassing: schrijf je berekening op. Tekening altijd met geodriehoek en potlood. Omtrek rechthoek

Nadere informatie

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen HAVO 2013. wiskunde B. tijdvak 1 vrijdag 17 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen HAVO 201 tijdvak 1 vrijdag 17 mei 1.0-16.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 80 punten te behalen. Voor elk

Nadere informatie

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur

Examen HAVO. wiskunde B1,2. tijdvak 1 dinsdag 20 mei uur Examen HAVO 2008 tijdvak 1 dinsdag 20 mei 13.30-16.30 uur wiskunde B1,2 Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 83 punten te behalen. Voor elk vraagnummer staat hoeveel punten met

Nadere informatie

Examen HAVO en VHBO. Wiskunde B

Examen HAVO en VHBO. Wiskunde B Wiskunde B Examen HAVO en VHBO Hoger Algemeen Voortgezet Onderwijs Vooropleiding Hoger Beroeps Onderwijs HAVO Tijdvak 1 VHBO Tijdvak 2 Dinsdag 23 mei 13.30 16.30 uur 00 Dit examen bestaat uit 19 vragen.

Nadere informatie

Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen.

Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen. Hoofdstuk 1 Spiegelen in lijn en in cirkel. Eigenschappen. Jakob Steiner (Utzenstorf (kanton Bern), 18 maart 1796 - Bern, 1 april 1863) was een Zwitsers wiskundige. Hij wordt beschouwd als een van de belangrijkste

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-II

Eindexamen wiskunde B1-2 vwo 2007-II ier tappen ij het tappen van bier treden verschillen op in de hoeveelheid bier per glas. Uit onderzoek blijkt dat de hoeveelheid bier die per glas getapt wordt bij benadering normaal verdeeld is met een

Nadere informatie

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG)

Lesbrief GeoGebra. 1. Even kennismaken met GeoGebra (GG) Lesbrief GeoGebra Inhoud: 1. Even kennismaken met GeoGebra 2. Meetkunde: 2.1 Punten, lijnen, figuren maken 2.2 Loodlijn, deellijn, middelloodlijn maken 2.3 Probleem M1: De rechte van Euler 2.4 Probleem

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 007 tijdvak woensdag 0 juni 13.30-16.30 uur wiskunde 1, ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 17 vragen. Voor dit eamen zijn maimaal 81 punten te behalen. Voor elk vraagnummer

Nadere informatie

Checklist Wiskunde B HAVO HML

Checklist Wiskunde B HAVO HML Checklist Wiskunde B HAVO 4 2014-2015 HML 1 Hoofdstuk 1 Lineaire vergelijkingen en lineaire ongelijkheden oplossen. Wanneer klapt het teken om? Haakjes en breuken wegwerken. Ontbinden in factoren: x buiten

Nadere informatie

Examen VBO-MAVO-D. Wiskunde

Examen VBO-MAVO-D. Wiskunde Wiskunde Examen VBO-MAVO-D Voorbereidend Beroeps Onderwijs Middelbaar Algemeen Voortgezet Onderwijs Tijdvak 1 Vrijdag 6 mei 13.30 15.30 uur 0 00 Dit examen bestaat uit 4 vragen. Voor elk vraagnummer is

Nadere informatie

Werkblad Cabri Jr. Vermenigvuldigen van figuren

Werkblad Cabri Jr. Vermenigvuldigen van figuren Werkblad Cabri Jr. Vermenigvuldigen van figuren Doel Het onderzoeken van de vermenigvuldigingsafbeelding (homothetie) en het bekijken van de relaties tussen het origineel en het beeld van een meetkundige

Nadere informatie

Driehoeksongelijkheid en Ravi (groep 1)

Driehoeksongelijkheid en Ravi (groep 1) Driehoeksongelijkheid en Ravi (groep 1) Trainingsdag 3, april 009 Driehoeksongelijkheid Driehoeksongelijkheid Voor drie punten in het vlak A, B en C geldt altijd dat AC + CB AB. Gelijkheid geldt precies

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,

Nadere informatie

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo

Bij deze PTA-toets hoort een uitwerkbijlage, die behoort bij opdracht 4c. Pagina 1 van 8. Vestiging Westplasmavo Vestiging Westplasmavo vak : Wiskunde leerweg : TL toetsnummer : 4T-WIS-S06 toetsduur: : 100 minuten aantal te behalen punten : 56 punten cesuur : 28 punten toetsvorm : Schriftelijk hulpmiddelen : Geodriehoek,

Nadere informatie

Ruimtelijke oriëntatie: plaats en richting

Ruimtelijke oriëntatie: plaats en richting Ruimtelijke oriëntatie: plaats en richting 1 Lijnen en rechten Hoe kunnen lijnen zijn? gebogen of krom gebroken recht We onthouden: Een rechte is een rechte lijn. c a b Een rechte heeft geen begin- en

Nadere informatie

Examen VBO-MAVO-C. Wiskunde

Examen VBO-MAVO-C. Wiskunde Wiskunde Examen VBO-MAVO-C Voorbereidend Beroeps Onderwijs Middelbaar Algemeen Voortgezet Onderwijs Tijdvak 1 Vrijdag 6 mei 13.30 15.30 uur 0 00 Dit examen bestaat uit 3 vragen. Voor elk vraagnummer is

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Thema 08: Hoeken vmbo-b12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie.

Thema 08: Hoeken vmbo-b12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd 25 May 2016 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/56977 Dit lesmateriaal is gemaakt met Wikiwijs Maken van

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Zeepvliezen PO. door M. van den Bosch- Knip Meetkunde Presentatie WiskundeCongres

Zeepvliezen PO. door M. van den Bosch- Knip Meetkunde Presentatie WiskundeCongres Zeepvliezen PO door M. van den Bosch- Knip mirjamvdbk@gmail.com Meetkunde Presentatie 16-11-2016 WiskundeCongres Uw spreker Ir Mirjam van den Bosch- Knip RBA MSc MSc TU Twente: Chemische Technologie Rabobank:

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ²

Dan is de afstand A B = lengte van lijnstuk [A B]: AB = x x )² + ( y ² 1 Herhaling 1.1 Het vlak, punten, afstand, midden Opdracht: Teken in het vlak de punten: A ( 1, 2) B(3,6) C( 5,7) Bepaal de coördinaat van het midden van (lijnstuk) [A B]: M [B C ]: N Bepaal de afstand

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen). Jozef Hoekmeters bevindt zich op de top van een berg die hoog uit zee rijst (zie figuur ). Aan de overkant van het water ziet hij een appartementsgebouw vlakbij

Nadere informatie

2.5 Regelmatige veelhoeken

2.5 Regelmatige veelhoeken Regelmatige veelhoeken 81 2.5 Regelmatige veelhoeken Een regelmatige veelhoek is een figuur met zijden die allemaal even lang en hoekendieallemaalevengrootzijn. Wezijneraleenpaartegengekomen: de regelmatige

Nadere informatie

2 Vergelijkingen van lijnen

2 Vergelijkingen van lijnen 2 Vergelijkingen van lijnen Verkennen Meetkunde Lijnen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Gebruik de applet! Uitleg Meetkunde Lijnen Uitleg Opgave 1 Bestudeer de Uitleg. Laat zien

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VMBO-KB. wiskunde CSE KB. tijdvak 2 dinsdag 22 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen VMBO-KB 2010 tijdvak 2 dinsdag 22 juni 13.30-15.30 uur wiskunde CSE KB Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 26 vragen. Voor dit examen zijn maximaal 77 punten te behalen.

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

HP Prime: Meetkunde App

HP Prime: Meetkunde App HP Prime Graphing Calculator HP Prime: Meetkunde App Meer over de HP Prime te weten komen: http://www.hp-prime.nl De Meetkunde-App op de HP Prime Meetkunde is een van de oudste wetenschappen op aarde,

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

2 Trigonometrie. Domein Meetkunde havo B

2 Trigonometrie. Domein Meetkunde havo B Domein Meetkunde havo B Trigonometrie Inhoud.. Sinus, cosinus en tangens.. Lijnen en hoeken.. De sinusregel.4. De cosinusregel.5. Overzicht In opdracht van: Commissie Toekomst Wiskunde Onderwijs ctwo Utrecht

Nadere informatie

6 Ligging. Verkennen. Uitleg

6 Ligging. Verkennen. Uitleg 6 Ligging Verkennen Ligging Inleiding Verkennen Door in de applet het assenstelsel te draaien kun je nagaan of twee lijnen een snijpunt hebben. Je kunt ook andere lijnen proberen door de punten A, B, C

Nadere informatie

Examen HAVO. Wiskunde B1,2 (nieuwe stijl)

Examen HAVO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B1,2 (nieuwe stijl) Examen HAVO Hoger Algemeen Voortgezet Onderwijs Tijdvak 2 Woensdag 19 juni 13.30 16.30 uur 20 02 Voor dit examen zijn maximaal 85 punten te behalen; het examen bestaat uit

Nadere informatie

Vlakke meetkunde en geogebra

Vlakke meetkunde en geogebra Vlakke meetkunde en geogebra Open de geogebra-app. Kies het algebra- en tekenvenster. Aan de linkerkant zie je het algebravenster en rechts daarvan het tekenvenster met een x-as en een y-as. Om een rooster

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

Voorbeeldexamen Wiskunde B Havo

Voorbeeldexamen Wiskunde B Havo Voorbeeldexamen Wiskunde B Havo Datum: Tijd: 13:00-16:00 Aantal opgaven: 6 Aantal subvragen: 18 Totaal aantal punten: 67 ) Zet uw naam op alle blaadjes die u inlevert. ) Laat bij iedere opgave door middel

Nadere informatie

j (11,51) k (11,-41) l (11,-1011)

j (11,51) k (11,-41) l (11,-1011) H0 COÖRDINATEN 0.1 INTRO 1 a A3, C1, C3 b 3 A3, C1 a d6 of h10 0. DE WERELD IN KAART 3 B 4 a d Zie assenstelsel opgave 6. e b Zie bovenstaande wereldbol. Zie bovenstaande wereldbol. d 90 NB 5 a 7 b b Zie

Nadere informatie

Eindexamen wiskunde B havo I (oude stijl)

Eindexamen wiskunde B havo I (oude stijl) Een functie Voor 0 < = x < = 2π is gegeven de functie figuur 1 f(x) = 2sin(x + 1 6 π). In figuur 1 is de grafiek van f getekend. y 1 f 4 p 1 Los op: f(x) < 1. De lijn l raakt de grafiek van f in het punt

Nadere informatie

Werkblad Cabri Jr. Vierkanten

Werkblad Cabri Jr. Vierkanten Werkblad Cabri Jr. Vierkanten Doel Allereerst leren we hierin dat er een verschil is tussen het "tekenen" van een vierkant en het "construeren" van een vierkant. Vervolgens bekijken we enkele eigenschappen

Nadere informatie

Het gewicht van een paard

Het gewicht van een paard Het gewicht van een paard Voor mensen die paarden verzorgen figuur 1, is het belangrijk om te weten hoe zwaar hun paard is. Het gewicht van een paard kan worden geschat met behulp van twee afmetingen:

Nadere informatie

Hoofdstuk 10 Meetkundige berekeningen

Hoofdstuk 10 Meetkundige berekeningen Hoofdstuk 10 Meetkundige berekeningen Les 0 (Extra) Aant. Voorkennis: Hoeken en afstanden Theorie A: Sinus, Cosinus en tangens O RHZ tan A = A RHZ O RHZ sin A = SZ A RHZ cos A = SZ Afspraak: Graden afronden

Nadere informatie

Uitwerkingen oefeningen hoofdstuk 4

Uitwerkingen oefeningen hoofdstuk 4 Uitwerkingen oefeningen hoofdstuk 4 4.4.1 Basis Lijnen en hoeken 1 Het assenstelsel met genoemde lijnen ziet er als volgt uit: 4 3 2 1 l k -4-3 -2-1 0 1 2 3 4-1 -2-3 n m -4 - Hieruit volgt: a Lijn k en

Nadere informatie

In een zware tornado worden maximale windsnelheden van ongeveer 280 km/u bereikt.

In een zware tornado worden maximale windsnelheden van ongeveer 280 km/u bereikt. Tornadoschalen In tornado s kunnen hoge windsnelheden bereikt worden. De zwaarte of heftigheid van een tornado wordt intensiteit genoemd. Er zijn verschillende schalen om de intensiteit van een tornado

Nadere informatie

klas 3 havo Checklist HAVO klas 3.pdf

klas 3 havo Checklist HAVO klas 3.pdf Checklist 3 HAVO wiskunde klas 3 havo Checklist HAVO klas 3.pdf 1. Hoofdstuk 1 - lineaire problemen Ik weet dat de formule y = a x + b hoort bij de grafiek hiernaast. Ik kan bij een lineaire formule de

Nadere informatie

Thema: Hoeken vmbo-kgt12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie.

Thema: Hoeken vmbo-kgt12. CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie. Auteur VO-content Laatst gewijzigd 09 January 2017 Licentie CC Naamsvermelding-GelijkDelen 3.0 Nederland licentie Webadres http://maken.wikiwijs.nl/57086 Dit lesmateriaal is gemaakt met Wikiwijs Maken

Nadere informatie

De wiskunde van de beeldherkenning

De wiskunde van de beeldherkenning De wiskunde van de beeldherkenning Op zoek naar wat er niet verandert! In het kader van: (Bij) de Faculteit Wiskunde en Informatica van de TU/e op bezoek c Faculteit Wiskunde en Informatica, TU/e Inhoudsopgave

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Antwoordmodel - In de ruimte

Antwoordmodel - In de ruimte Antwoordmodel - In de ruimte Vraag 1 Welke ruimtefiguren (of delen van) herken je op de volgende foto s? a Foto 1. Balk, prisma, cilinder en kubus. b Foto 2. Cilinder, balk, kubus en prisma c Foto 3. Balk,

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

Eindexamen wiskunde b 1-2 havo 2002 - II

Eindexamen wiskunde b 1-2 havo 2002 - II Pompen of... Een cilindervormig vat met een hoogte van 32 dm heeft een inhoud van 8000 liter (1 liter = 1 dm 3 ). figuur 1 4p 1 Bereken de diameter van het vat. Geef je antwoord in gehele centimeters nauwkeurig.

Nadere informatie

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN

tan c b + a c c b HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN HOOFDSTUK 8 DRIEHOEKSMETING IN EEN RECHTHOEKIGE DRIEHOEK EXTRA OEFENINGEN ) Gegeven: een rechthoekige driehoek ABC. Schrijf de volgende goniometrische getallen in functie van de lengten van de zijden van

Nadere informatie

Deel 3 havo. Docentenhandleiding havo deel 3 CB

Deel 3 havo. Docentenhandleiding havo deel 3 CB Deel 3 havo De hoeveelheid leerstof is gebaseerd op drie lesuren per week. Met drie lesuren is het in ieder geval mogelijk om de basisstof van tien hoofdstukken door te werken, eventueel met de verkorte

Nadere informatie

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur

Examen HAVO. wiskunde B (pilot) tijdvak 2 woensdag 22 juni uur Examen HAVO 011 tijdvak woensdag juni 13.30-16.30 uur wiskunde B (pilot) Dit examen bestaat uit 19 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer staat hoeveel punten

Nadere informatie

Werkblad Cabri Jr. Hoeken van een driehoek

Werkblad Cabri Jr. Hoeken van een driehoek Werkblad Cabri Jr. Hoeken van een driehoek Doel Het meten van de hoeken en de buitenhoeken van een driehoek. Definities Nevenhoeken zijn hoeken die twee benen gemeenschappelijk hebben en samen 180 zijn.

Nadere informatie

5 Lijnen en vlakken. Verkennen. Uitleg

5 Lijnen en vlakken. Verkennen. Uitleg 5 Lijnen en vlakken Verkennen Lijnen en vlakken Inleiding Verkennen Bekijk de applet. Je ziet hoe een vlak kan worden beschreven met behulp van een vergelijking in x, en z. In de applet kun je de drie

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

12.1 Omtrekshoeken en middelpuntshoeken [1]

12.1 Omtrekshoeken en middelpuntshoeken [1] 12.1 Omtrekshoeken en middelpuntshoeken [1] Stelling van de constante hoek: Voor de punten C en D op dezelfde cirkelboog AB geldt: ACB = ADB. Omgekeerde stelling van de constante hoek: Als punt D aan dezelfde

Nadere informatie

4 A: = 10 B: 4 C: 8 D: 8

4 A: = 10 B: 4 C: 8 D: 8 Hoofdstuk OPPERVLAKTE VWO 0 INTRO A: + 6 = 0 B: C: 8 D: 8 DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0 Daar gaan twee halve

Nadere informatie

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1

de Wageningse Methode Antwoorden H24 GONIOMETRIE VWO 1 H GONIOMETRIE VWO.0 INTRO 6 km : 0.000 = cm b b Driehoek PQB is gelijkvormig met driehoek VHB, de 00 vergrotingsfctor is 0 = 7. Dus PQ = 680 = 0, dus zeilt ze 0 meter 7 in minuten. Dt is,8 km/u.. HOOGTE

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie