Einstein (6) v(=3/4c) + u(=1/2c) = 5/4c en... dat kan niet!

Maat: px
Weergave met pagina beginnen:

Download "Einstein (6) v(=3/4c) + u(=1/2c) = 5/4c en... dat kan niet!"

Transcriptie

1 Einstein (6) n de voorafgaande artikelen hebben we het gehad over tijdsdilatatie en Lorenzcontractie (tijd en lengte zijn niet absoluut maar hangen af van de snelheid tussen waarnemer en waargenomene). Tijdsduren bleken langer en lengtes juist korter te worden bij toenemende snelheid. n dit artikel willen we aandacht besteden aan het optellen van snelheden en het niet constant zijn van massa (d.w.z. weer afhankelijk van snelheid van de waarnemer t.o.v. het waargenomene) Als gedachte-experiment nemen we een trein die met een snelheid v = 3/4 c een perron passeert. n diezelfde trein beweegt een persoon zich met een snelheid u = / c (t.o.v. de trein) naar voren. Met welke snelheid ziet een perronchef nu deze persoon? Volgens de klassieke mechanica zou dat een snelheid w = v + u zijn. Maar... v(=3/4c) + u(=/c) = 5/4c en... dat kan niet! mmers de lichtsnelheid c is de maximaal haalbare snelheid! Hieruit volgt al "zonneklaar" dat men snelheden niet zomaar bij elkaar mag optellen. De afleiding besparen we U maar de som van twee snelheden u en v bedraagt: w = u + v + uv / c ndien u en v beide veel kleiner zijn dan c (wat in bijna alle gevallen ook zo is) dan is de noemer praktisch gelijk aan en wordt w inderdaad u + v. Stel dat zowel u en v (bijna) gelijk zijn aan c dan wordt de noemer gelijk aan en krijgen we w = c! De kans is groot dat alle relativistische formules voor tijd, lengte ( waarin we de Lorenzfactor tegenkwamen) en som van twee snelheden, nieuw voor U waren. Daarom hieronder een formule die toch wel iedereen zal kennen en die tot uitdrukking brengt dat massa (m) in feite ook een vorm van energie (E) is ter grootte van: E = m. c (afl. zie bijlage )

2 Besef wel dat deze formule twee grondslagen van het natuurwetenschappelijk denken nl: De wet van behoud van massa (Lavoisier 789) en De Wet van behoud van energie (Robert Mayor 84) radicaal over boord gooide! Wat Einstein beweerde kwam neer op het feit dat massa kan verdwijnen (Totale massa voor en na de reactie dus niet gelijk) en dat daar energie voor in de plaats kan komen. Deze hoeveelheid energie kan met bovenstaande formule uitgerekend worden. We zullen U niet vermoeien met berekeningen maar als het U zou lukken bv zandkorrel geheel om te zetten in energie, dan is die energie voldoende om levenslang Uw huis er mee te verwarmen! Hoe kon het dan gebeuren dat Lavoisier dacht dat bv bij een verbrandingsproces (waarbij dus energie gevormd wordt en dus massa "verloren" gaat) de massa voor en na de reactie gelijk bleef? Uit voorafgaand voorbeeld kunt U het antwoord zelf wel bedenken: Het massa verlies (ook wel massadefect genoemd) was zo gering dat dit -met de toen bestaande meetmethodenonmogelijk gemeten kon worden. s het nu wel mogelijk bij een reactie waarbij energie gevormd wordt, het massadefect te meten en daarmee een onomstotelijk experimenteel bewijs van Einsteins uitspraak te leveren? Het antwoord is ja en wel om twee redenen. Niet alleen is de meettechniek (bij het bepalen van massa's bv) zeer sterk verbeterd, er zijn nu ook processen bekend waarbij de ontwikkelde energie vele (miljoenen) malen groter is dan die van ordinaire verbrandingsprocessen, n.l.l kernreacties. Denk maar eens aan de atoombom! Dank zij het huidige inzicht in kernreacties is het nu ook duidelijk hoe het mogelijk was dat ons aller energiebron de zon in staat geweest is om 5 miljard jaar lang zulke enorme energiehoeveelheden te produceren. En maakt U zich maar niet ongerust: onze zon kan dit nog eens 5 miljard jaar volhouden voordat hij uiteindelijk "opgebrand" zal raken waardoor onze planeet (voor zover nog niet verwoest door een of ander kernongeval) met alle leven erop een onherroepelijke vriesdood zal sterven! (Voor de betreffende reactie op de zon: zie bijlage )

3 Zoals reeds gezegd: massa is een vorm van energie. Omgekeerd kan men zeggen dat energie ook een zekere massa vertegenwoordigt. Voorwerpen met een snelheid v bezitten een kinetische energie: E( kin) =. m. v Maar... dit betekent dat deeltjes (of andere voorwerpen) t.g.v. hun kinetische energie ook een grotere massa zullen hebben! Noemen we de massa van een deeltje in ruste m ( ) dan zal de massa van een deeltje met snelheid v groter zijn en wel: m = m + E / v kin Uit de speciale relativiteitstheorie wisten we al dat tijdsduur en lengte relatieve begrippen waren. Nu blijkt dus ook de massa afhankelijk van zijn snelheid te zijn. Een deeltje met rustmassa m en snelheid v bezit in feite een massa m = m ( v / c ) Ook hier zien we weer de Lorenzfactor waarmee ook tijd en lengte bij snelheden v berekend kunnen worden! Merken we in de praktijk nu iets van deze massatoename? n het dagelijks leven zeker niet omdat snelheden v zó klein zijn t.o.v. c dat de Lorenzfactor praktisch gelijk aan is. Maar in zeer krachtige deeltjesversnellers (zoals het cyclotron) bereiken deeltjes (zoals elektronen maar ook protonen en de antideeltjes ervan) snelheden welke bijna de lichtsnelheid evenaren. Bij de berekening van de energie van deze deeltjes moet men dan ook niet de fout maken om bij de formule: voor m de rustmassa m in te vullen. Ekin = m. v

4 Bij een snelheid van b.v.: v= 9. km/s is de feitelijke massa m al zo'n 5 maal hoger dan de rustmassa m Dat de lichtsnelheid c nooit bereikt kan worden zal U intussen wel duidelijk zijn: bij die snelheid is de massa oneindig groot geworden! Bijlage. n de kern van onze zon (welke voor 95% uit waterstof bestaat) vinden, dank zij de enorm hoge druk en temperatuur) kernreacties plaats welke als totaalreactie hebben: 4 H He + e + ν 4 Hieruit blijkt dat waterstof ( H ) omgezet wordt in Helium ( He ) en positronen (e) en neutrinos ( ν ) 4 De massa van een waterstofkern( proton H ) bedraagt,78 ame 4 De massa van een Heliumkern ( He ) bedraagt 4,6 ame De massa van een positron ( e ) bedraagt,55ame Deze waarden, ingevuld in bovenstaande vergelijking, geeft aan dat de massa voor de reactie 4,34 ame en na de reactie 4,37 ame bedraagt. Dit is dus een massadefect van,7 ame t.o.v. de beginmassa of wel,68 %. ame Staat voor atomaire massa eenheid: Eenheid van massa voor atomen en moleculen gelijk aan / deel van de massa van een koolstof atoom. dit is gelijk aan,6633x -7 kg. Dit wil zeggen dat bij elke Kilogrammassa waterstof waaruit Helium wordt gevormd er 6,8 grammassa omgezet wordt in energie welke dus ingevuld de formule van Einstein: E = m. c 6, 8 ( 3 ) = 6, J. bedraagt.

5 Daar m 3 aardgas een 'calorische" waarde heeft van 3. 7 J, blijkt (na enig rekenwerk) dit dus voldoende voor de energiebehoefte van een middelgrote stad voor een geheel jaar! Bijlage. Afleiding van E = m. c Het enige wat we voor deze afleiding nodig hebben is het feit dat "licht" (fotonen dus) massa bezitten (Zie Einstein (), VESTA juli'9) en dus ook een impuls p = E/c. Verder behoeven we alleen maar de wet van behoud van impuls toe te passen en het gegeven dat in een afgesloten systeem waarop van buitenaf geen krachten werken het massamiddelpunt gelijk blijft! Als gedachte experiment nemen we (in de ruimte vrij zwevende) zwarte doos met massa M, lengte l en in de linkerwand een lichtbron. (fig a) Op een gegeven moment produceert deze bron en lichtbundel met energie E (dus impuls E/c) welke zich naar de tegenovergestelde wand beweegt. Door zijn impuls zet deze bundel zich a.h.w. af tegen de linkerwand (vergelijk het met iemand die uit een stilliggend roeibootje springt waardoor dit bootje juist in de tegenovergestelde richting zich gaat bewegen) De doos gaat zich nu met een snelheid v naar links bewegen (zie fig b). Na een tijdsduur t komt de lichtbundel bij de rechterwand aan waar die door de wand geabsorbeerd wordt en waarbij de doos nu weer tot stilstand komt.(zie fig c) lichtbron t= moment waarop licht- a bundel wordt uitgezonden door "afzet" van lichtbundel b beweegt doos zich naar links (lichtbundel naar rechts) t.s na uitzending treft bundel c tegenoverliggende wand. Door deze stoot komt doos weer tot rust y

6 n die tijd t heeft de doos zich nu over een afstand y naar links verplaatst. Voor de lichtbundel geldt: l = c.t mpuls p = E c ( licht ) / Voor de doos geldt y = v.t mpuls P( doos) = M v Volgens de wet van behoud van impuls geldt mpuls voor de reactie = impuls na de reactie = M v + E / c of wel M = E / v c () n tijd t legt licht af (naar rechts) l = c.t (a) n tijd t legt doos af y (naar links) y = v.t ) (b) Uit a en b volgt: y / = v / c Het zwaartepunt blijft gelijk dus de massaverplaatsing van het licht naar rechts (ml) is gelijk aan de massaverplaatsing van de doos naar links (M.y) of wel () m l + M y = of wel m = M y / l (3) Vul voor M de waarde - E/vc -zie ()- in en en voor y/l de waarde v/c -zie ()- in m = ( E / v c) v / c = E / c Of wel E = m c Verrassend niet waar? U ziet dat U met slechts de kennis van de impuls van een lichtbundel met massa m en impuls E/c (want de wet van behoud van impuls en massamiddelpunt kende U allang) zelf tot dit resultaat had kunnen komen! (maar dan was U ook een genie als Einstein geweest!) Volgende aflevering iets over de beroemde tweelingparadox waarmee we de serie over de speciale relativiteitstheorie afsluiten. Jaap Kuyt.

1 Leerlingproject: Relativiteit 28 februari 2002

1 Leerlingproject: Relativiteit 28 februari 2002 1 Leerlingproject: Relativiteit 28 februari 2002 1 Relativiteit Als je aan relativiteit denkt, dan denk je waarschijnlijk als eerste aan Albert Einstein. En dat is dan ook de bedenker van de relativiteitstheorie.

Nadere informatie

Sterrenkunde Ruimte en tijd (3)

Sterrenkunde Ruimte en tijd (3) Sterrenkunde Ruimte en tijd (3) Zoals we in het vorige artikel konden lezen, concludeerde Hubble in 1929 tot de theorie van het uitdijende heelal. Dit uitdijen geschiedt met een snelheid die evenredig

Nadere informatie

Uit: Niks relatief. Vincent Icke Contact, 2005

Uit: Niks relatief. Vincent Icke Contact, 2005 Uit: Niks relatief Vincent Icke Contact, 2005 Dé formule Snappiknie kanniknie Waarschijnlijk is E = mc 2 de beroemdste formule aller tijden, tenminste als je afgaat op de meerderheid van stemmen. De formule

Nadere informatie

De Broglie. N.G. Schultheiss

De Broglie. N.G. Schultheiss De Broglie N.G. Schultheiss Inleiding Deze module volgt op de module Detecteren en gaat vooraf aan de module Fluorescentie. In deze module wordt de kleur van het geabsorbeerd of geëmitteerd licht gekoppeld

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie Speciale relativiteitstheorie De drie vragen van Einstein Wat is licht? Wat is massa? Wat is tijd? In 1905, Einstein was toen 26 jaar! Klassiek: wat is licht? Licht is een golf, die naar alle kanten door

Nadere informatie

Relativiteitstheorie met de computer

Relativiteitstheorie met de computer Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!

Nadere informatie

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben.

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben. Uitwerkingen HiSPARC Elementaire deeltjes C.G.N. van Veen 1 Hadronen Opdracht 1: Elementaire deeltjes worden onderverdeeld in quarks en leptonen. (a) Noem twee eigenschappen die quarks en leptonen met

Nadere informatie

Impuls, energie en massa

Impuls, energie en massa Impuls, energie en massa 1 Impuls (klassiek) Elastische en onelastische botsingen 3 Relativistische impuls en energie 4 Botsingen van (sub)atomaire deeltjes 5 Massadefect bij kernreacties 6 Bindingsenergie

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale

Nadere informatie

Einstein (2) op aardoppervlak. versnelling van 10m/s 2. waar het foton zich bevindt a) t = 0 b) t = 1 s c) t = 2 s op t=0,t=1s en t=2s A B C A B

Einstein (2) op aardoppervlak. versnelling van 10m/s 2. waar het foton zich bevindt a) t = 0 b) t = 1 s c) t = 2 s op t=0,t=1s en t=2s A B C A B Einstein (2) In het vorig artikeltje zijn helaas de tekeningen, behorende bij bijlage 4,"weggevallen".Omdat het de illustratie betrof van de "eenvoudige" bewijsvoering van de kromming der lichtstralen

Nadere informatie

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde André van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s speciale relativiteitstheorie, maarr dan begrijpelijk

Nadere informatie

OVERAL, variatie vanuit de kern LES- BRIEF. Tweede Fase. Het neutrinomysterie. Foto: CERN

OVERAL, variatie vanuit de kern LES- BRIEF. Tweede Fase. Het neutrinomysterie. Foto: CERN OVERAL, variatie vanuit de kern LES- BRIEF Tweede Fase Het neutrinomysterie Foto: CERN 1 Het was op het nieuws, het was in de krant, iedereen had het er over: neutrino s die sneller gaan dan het licht.

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 10 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

RELATIVITEIT VWO. Lengtecontractie Rust- bewegende massa Relativistisch optellen

RELATIVITEIT VWO. Lengtecontractie Rust- bewegende massa Relativistisch optellen RELATIVITEIT VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan op

Nadere informatie

Theory DutchBE (Belgium) De grote hadronen botsingsmachine (LHC) (10 punten)

Theory DutchBE (Belgium) De grote hadronen botsingsmachine (LHC) (10 punten) Q3-1 De grote hadronen botsingsmachine (LHC) (10 punten) Lees eerst de algemene instructies in de aparte envelop alvorens te starten met deze vraag. In deze opdracht wordt de fysica van de deeltjesversneller

Nadere informatie

De Zon. N.G. Schultheiss

De Zon. N.G. Schultheiss 1 De Zon N.G. Schultheiss 1 Inleiding Deze module is direct vanaf de derde of vierde klas te volgen en wordt vervolgd met de module De Broglie of de module Zonnewind. Figuur 1.1: Een schema voor kernfusie

Nadere informatie

nieuw deeltje deeltje 1 deeltje 2 deeltje 2 tijd

nieuw deeltje deeltje 1 deeltje 2 deeltje 2 tijd Samenvatting Inleiding De kern Een atoom bestaat uit een kern en aan de kern gebonden elektronen, die om de kern cirkelen. Dat de elektronen aan de kern gebonden zijn, komt doordat er een kracht werkt

Nadere informatie

Natk4All Leraren opleiding Speciale Relativiteitstheorie (leerjaar )

Natk4All Leraren opleiding Speciale Relativiteitstheorie (leerjaar ) Natk4All Leraren opleiding Speciale Relativiteitstheorie (leerjaar 2016-2017) February 5, 2017 Tijd: 2 uur 30 min Afsluitend Maximum Marks: 78+5(bonusopgave) 1. In wereld van serie Star-Trek kunnen mensen

Nadere informatie

Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. Een korte inleiding:

Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. Een korte inleiding: 1 Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. 23-09-2015 -------------------------------------------- ( j.eitjes@upcmail.nl) Een korte inleiding: Is Ruimte zoiets als Leegte, een

Nadere informatie

1 Bellenvat. 1.1 Intorductie. 1.2 Impuls bepaling

1 Bellenvat. 1.1 Intorductie. 1.2 Impuls bepaling 1 Bellenvat 1.1 Intorductie In dit vraagstuk zullen we een analyse doen van een bellenvat foto die genomen is van een interactie van een π bundeldeeltje in een waterstof bellenvat. De bijgesloten foto

Nadere informatie

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier.

Alfastraling bestaat uit positieve heliumkernen (2 protonen en 2 neutronen) met veel energie. Wordt gestopt door een blad papier. Alfa -, bèta - en gammastraling Al in 1899 onderscheidde Ernest Rutherford bij de uraniumstraling "minstens twee" soorten: één die makkelijk wordt geabsorbeerd, voor het gemak de 'alfastraling' genoemd,

Nadere informatie

Impuls, energie en massa

Impuls, energie en massa Impuls, energie en massa 1 Botsingen van voorwerpen Botsingen van (sub)atomaire deeltjes 3 Massadefect bij kernreacties 4 Bindingsenergie van atoomkernen 1 Botsingen van voorwerpen Inleiding In deze paragraaf

Nadere informatie

Het Quantum Universum. Cygnus Gymnasium

Het Quantum Universum. Cygnus Gymnasium Het Quantum Universum Cygnus Gymnasium 2014-2015 Wat gaan we doen? Fundamentele natuurkunde op de allerkleinste en de allergrootste schaal. Groepsproject als eindopdracht: 1) Bedenk een fundamentele wetenschappelijk

Nadere informatie

Bewijzen en toegiften

Bewijzen en toegiften Bewijzen en toegiften 1 Het bewijs van Mermin voor het optellen van snelheden W op een perron ziet W in een treinwagon passeren met snelheid v. W schiet een kogel af met snelheid u en stuurt tegelijkertijd

Nadere informatie

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud

Higgs-deeltje. Peter Renaud Heideheeren. Inhoud Higgs-deeltje Peter Renaud Heideheeren Inhoud 1. Onze fysische werkelijkheid 2. Newton Einstein - Bohr 3. Kwantumveldentheorie 4. Higgs-deeltjes en Higgs-veld 3 oktober 2012 Heideheeren 2 1 Plato De dingen

Nadere informatie

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel

Uitwerking Opgave Zonnestelsel 2005/2006: 1. 1 Het Zonnestelsel en de Zon. 1.1 Het Barycentrum van het Zonnestelsel Uitwerking Opgave Zonnestelsel 2005/2006: 1 1 Het Zonnestelsel en de Zon 1.1 Het Barycentrum van het Zonnestelsel Door haar grote massa domineert de Zon het Zonnestelsel. Echter, de planeten hebben een

Nadere informatie

H2: Het standaardmodel

H2: Het standaardmodel H2: Het standaardmodel 2.1 12 Fundamentele materiedeeltjes De elementaire deeltjes worden in 2 groepen opgedeeld volgens spin (aantal keer dat een deeltje rond zijn eigen as draait), de fermionen zijn

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 7 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber

Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber Tijd in de fysica Paul Koerber Postdoctoraal Onderzoeker FWO Instituut voor Theoretische Fysica, K.U.Leuven Kunsthumaniora Brussel, 2 maart 2011 1 / 16 Wat is tijd? Een coördinaat om de positie van een

Nadere informatie

Relativiteit. N.G. Schultheiss

Relativiteit. N.G. Schultheiss 1 Relativiteit N.G. Shultheiss 1 Inleiding In deze module wordt er uitgelegd hoe een natuurkundige gebeurtenis door vershillende waarnemers wordt waargenomen. Iedere waarnemer heeft een eigen assenstelsel

Nadere informatie

Schoolexamen Moderne Natuurkunde

Schoolexamen Moderne Natuurkunde Schoolexamen Moderne Natuurkunde Natuurkunde 1,2 VWO 6 24 maart 2003 Tijdsduur: 90 minuten Deze toets bestaat uit 3 opgaven met 16 vragen. Voor elk vraagnummer is aangegeven hoeveel punten met een goed

Nadere informatie

Maar het leidde ook tot een uitkomst die essentieel is in mijn werkstuk van een Stabiel Heelal.

Maar het leidde ook tot een uitkomst die essentieel is in mijn werkstuk van een Stabiel Heelal. -09-5 Bijlage voor Stabiel Heelal. --------------------------------------- In deze bijlage wordt onderzocht hoe in mijn visie materie, ruimte en energie zich tot elkaar verhouden. Op zichzelf was de fascinatie

Nadere informatie

Deeltjes in Airshowers. N.G. Schultheiss

Deeltjes in Airshowers. N.G. Schultheiss 1 Deeltjes in Airshowers N.G. Shultheiss 1 Inleiding Deze module volgt op de module Krahten in het standaardmodel. Deze module probeert een beeld te geven van het ontstaan van airshowers (in de atmosfeer)

Nadere informatie

De Large Hadron Collider 2.0. Wouter Verkerke (NIKHEF)

De Large Hadron Collider 2.0. Wouter Verkerke (NIKHEF) De Large Hadron Collider 2.0 Wouter Verkerke (NIKHEF) 11 2 De Large Hadron Collider LHCb ATLAS CMS Eén versneller vier experimenten! Concept studie gestart in 1984! Eerste botsingen 25 jaar later in 2009!!

Nadere informatie

Tentamen - uitwerkingen

Tentamen - uitwerkingen Tentamen - uitwerkingen Mechanica en Relativiteitstheorie voor TW 5 april 06 Kennisvragen - 0 punten a) Geef de drie behoudswetten van de klassieke mechanica, en geef voor elk van de drie aan onder welke

Nadere informatie

Uitdijing van het heelal

Uitdijing van het heelal Uitdijing van het heelal Zijn we centrum van de expansie? Nee Alles beweegt weg van al de rest: Alle afstanden worden groter met zelfde factor a(t) a 4 2 4a 2a H Uitdijing van het heelal (da/dt) 2 0 a(t)

Nadere informatie

Neutrinos sneller dan het licht?

Neutrinos sneller dan het licht? Neutrinos sneller dan het licht? Kosmische neutrinos Ed P.J. van den Heuvel, Universiteit van Amsterdam 24/10/2011 Zon en planeten afgebeeld op dezelfde schaal Leeftijd zon en planeten: 4,65 miljard jaar

Nadere informatie

Doet onze zon het morgen nog? D.w.z. schijnt hij morgen ook weer lekker? Als ik het publiek vraag hoe lang het duurt voor het licht van de zon op de

Doet onze zon het morgen nog? D.w.z. schijnt hij morgen ook weer lekker? Als ik het publiek vraag hoe lang het duurt voor het licht van de zon op de Doet onze zon het morgen nog? D.w.z. schijnt hij morgen ook weer lekker? Als ik het publiek vraag hoe lang het duurt voor het licht van de zon op de Aarde aankomt is het antwoord steevast: zo n 8 minuten

Nadere informatie

7. Hoofdstuk 7 : De Elektronenstructuur van Atomen

7. Hoofdstuk 7 : De Elektronenstructuur van Atomen 7. Hoofdstuk 7 : De Elektronenstructuur van Atomen 7.1. Licht: van golf naar deeltje Frequentie (n) is het aantal golven dat per seconde passeert door een bepaald punt (Hz = 1 cyclus/s). Snelheid: v =

Nadere informatie

Uitwerkingen van de opgaven in Basisboek Natuurkunde

Uitwerkingen van de opgaven in Basisboek Natuurkunde opgave (blz 4) Uitwerkingen van de opgaven in Basisboek Natuurkunde De zwaarte-energie wordt gegeven door de formule W zwaarte = m g h In de opgave is de massa m = 0(kg) en de energie W zwaarte = 270(Joule)

Nadere informatie

Doet onze zon het morgen nog? D.w.z. schijnt hij morgen ook weer lekker?

Doet onze zon het morgen nog? D.w.z. schijnt hij morgen ook weer lekker? Doet onze zon het morgen nog? D.w.z. schijnt hij morgen ook weer lekker? OF: Als ik het publiek vraag hoe lang het duurt voor het licht van de zon op de Aarde aankomt is het antwoord steevast: zo n 8 minuten

Nadere informatie

Elektriciteit. Elektriciteit

Elektriciteit. Elektriciteit Elektriciteit Alles wat we kunnen zien en alles wat we niet kunnen zien bestaat uit kleine deeltjes. Zo is een blok staal gemaakt van staaldeeltjes, bestaat water uit waterdeeltjes en hout uit houtdeeltjes.

Nadere informatie

Eindexamen natuurkunde 1-2 vwo 2001-II

Eindexamen natuurkunde 1-2 vwo 2001-II Eindexamen natuurkunde - vwo 00-II 4 Antwoordmodel Opgave Seconde Maximumscore uitkomst: l = 6 (mm) 8 c, 9979458 0-0 l = = =, 6 0 m = 6 f 996770 mm. inzicht dat de frequentie gelijk is aan het aantal periodes

Nadere informatie

PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica

PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica PositronEmissieTomografie (PET) Een medische toepassing van deeltjesfysica Wat zie je? PositronEmissieTomografie (PET) Nucleaire geneeskunde: basisprincipe Toepassing van nucleaire geneeskunde Vakgebieden

Nadere informatie

Het ongrijpbare Higgs-deeltje gegrepen

Het ongrijpbare Higgs-deeltje gegrepen Het Standaardmodel Het ongrijpbare Higgs-deeltje gegrepen Lezing 13 februari 2015 - Koksijde Christian Rulmonde Er zijn 18 elementaire deeltjes waaruit de materie is opgebouwd. Ook de deeltjes die de natuurkrachten

Nadere informatie

Een mooi moment is er rond een honderdduizendste van een seconde. Ja het Universum is nog piepjong. Op dat moment is de temperatuur zover gedaald dat

Een mooi moment is er rond een honderdduizendste van een seconde. Ja het Universum is nog piepjong. Op dat moment is de temperatuur zover gedaald dat 1 Donkere materie, klinkt mysterieus. En dat is het ook. Nog steeds. Voordat ik u ga uitleggen waarom wij er van overtuigd zijn dat er donkere materie moet zijn, eerst nog even de successen van de Oerknal

Nadere informatie

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur

Tentamen. Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April Tijd/tijdsduur: 3 uur Tentamen Kwantumchemie & Fysica (4051QCHFY-1314FWN) Datum: 10 April 2014 Tijd/tijdsduur: 3 uur Docent(en) en/of tweede lezer: Dr. F.C. Grozema Prof. dr. L.D.A. Siebbeles Dit tentamen bestaat uit 5 opgaven:

Nadere informatie

Eindexamen vwo natuurkunde pilot 2012 - I

Eindexamen vwo natuurkunde pilot 2012 - I Eindexamen vwo natuurkunde pilot 0 - I Opgave Lichtpracticum maximumscore De buis is aan beide kanten afgesloten om licht van buitenaf te voorkomen. maximumscore 4 De weerstanden verhouden zich als de

Nadere informatie

Unificatie. Zwakke Kracht. electro-zwakke kracht. Electriciteit. Maxwell theorie. Magnetisme. Optica. Sterke Kracht. Speciale Relativiteitstheorie

Unificatie. Zwakke Kracht. electro-zwakke kracht. Electriciteit. Maxwell theorie. Magnetisme. Optica. Sterke Kracht. Speciale Relativiteitstheorie Electriciteit Magnetisme Unificatie Maxwell theorie Zwakke Kracht electro-zwakke kracht Optica Statistische Mechanica Speciale Relativiteitstheorie quantumveldentheorie Sterke Kracht Klassieke Mechanica

Nadere informatie

Botsingen. N.G. Schultheiss

Botsingen. N.G. Schultheiss 1 Botsingen N.G. Schultheiss 1 Inleiding In de natuur oefenen voorwerpen krachten op elkaar uit. Dit kan bijvoorbeeld doordat twee voorwerpen met elkaar botsen. We kunnen hier denken aan grote samengestelde

Nadere informatie

Doet onze zon het morgen nog? D.w.z. schijnt hij morgen ook weer lekker? Als ik het publiek vraag hoe lang het duurt voor het licht van de zon op de

Doet onze zon het morgen nog? D.w.z. schijnt hij morgen ook weer lekker? Als ik het publiek vraag hoe lang het duurt voor het licht van de zon op de Doet onze zon het morgen nog? D.w.z. schijnt hij morgen ook weer lekker? Als ik het publiek vraag hoe lang het duurt voor het licht van de zon op de Aarde aankomt is het antwoord steevast: zo n 8 minuten

Nadere informatie

Docentencursus relativiteitstheorie

Docentencursus relativiteitstheorie Docentencursus relativiteitstheorie Opgaven bijeenkomst 2, "Rekenen en tekenen" 8 september 203 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven die in de les of

Nadere informatie

De energievallei van de nucliden als nieuw didactisch concept

De energievallei van de nucliden als nieuw didactisch concept De energievallei van de nucliden als nieuw didactisch concept - Kernfysica: van beschrijven naar begrijpen Rita Van Peteghem Coördinator Wetenschappen-Wisk. CNO (Centrum Nascholing Onderwijs) Universiteit

Nadere informatie

Hoofdstuk 4: Arbeid en energie

Hoofdstuk 4: Arbeid en energie Hoofdstuk 4: Arbeid en energie 4.1 Energiebronnen Arbeid: W =............. Energie:............................................................................... Potentiële energie: E p =.............

Nadere informatie

KERNEN & DEELTJES VWO

KERNEN & DEELTJES VWO KERNEN & DEELTJES VWO Foton is een opgavenverzameling voor het nieuwe eindexamenprogramma natuurkunde. Foton is gratis te downloaden via natuurkundeuitgelegd.nl/foton Uitwerkingen van alle opgaven staan

Nadere informatie

Foutenberekeningen. Inhoudsopgave

Foutenberekeningen. Inhoudsopgave Inhoudsopgave Leerdoelen :... 3 1. Inleiding.... 4 2. De absolute fout... 5 3. De KOW-methode... 7 4. Grootheden optellen of aftrekken.... 8 5. De relatieve fout...10 6. grootheden vermenigvuldigen en

Nadere informatie

Docentencursus relativiteitstheorie

Docentencursus relativiteitstheorie Docentencursus relativiteitstheorie Uitwerkingen opgaven bijeenkomst 1, "Waarom relativiteit?" 18 september 2013 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven

Nadere informatie

toelatingsexamen-geneeskunde.be

toelatingsexamen-geneeskunde.be Fysica juli 2009 Laatste update: 31/07/2009. Vragen gebaseerd op het ingangsexamen juli 2009. Vraag 1 Een landingsbaan is 500 lang. Een vliegtuig heeft de volledige lengte van de startbaan nodig om op

Nadere informatie

Het Standaardmodel. HOVO college Teylers 20 maart 2012 K.J.F.Gaemers

Het Standaardmodel. HOVO college Teylers 20 maart 2012 K.J.F.Gaemers Het Standaardmodel HOVO college Teylers 20 maart 2012 K.J.F.Gaemers 20 maart 2012 HOVO 2012 I 2 20 maart 2012 HOVO 2012 I 3 C12 atoom 6 elektronen 6 protonen 6 neutronen 20 maart 2012 HOVO 2012 I 4 20

Nadere informatie

Afstanden en roodverschuiving in een Stabiel Heelal Inleiding.

Afstanden en roodverschuiving in een Stabiel Heelal Inleiding. Afstanden en roodverschuiving in een Stabiel Heelal ---------------------------------------------------------------------- Inleiding. Wanneer men nu aanneemt dat het heelal stabiel is, dus dat alles in

Nadere informatie

Prof.dr. A. Achterberg, IMAPP

Prof.dr. A. Achterberg, IMAPP Prof.dr. A. Achterberg, IMAPP Hoorcollege: Woensdag 10:45-12:30 in HG00.308 Data: 13 april t/m 15 juni; niet op 27 april & 4 mei Werkcollege: Vrijdag, 15:45-17:30, in HG 03.053 Data: t/m 17 juni; niet

Nadere informatie

1 Leerlingproject: Kosmische straling 28 februari 2002

1 Leerlingproject: Kosmische straling 28 februari 2002 1 Leerlingproject: Kosmische straling 28 februari 2002 1 Kosmische straling Onder kosmische straling verstaan we geladen deeltjes die vanuit de ruimte op de aarde terecht komen. Kosmische straling is onder

Nadere informatie

Definitie. In deze workshop kijken we naar 3 begrippen. Massa, Volume en Mol. Laten we eerst eens kijken wat deze begrippen nu precies inhouden.

Definitie. In deze workshop kijken we naar 3 begrippen. Massa, Volume en Mol. Laten we eerst eens kijken wat deze begrippen nu precies inhouden. Definitie In deze workshop kijken we naar 3 begrippen. Massa, Volume en Mol. Laten we eerst eens kijken wat deze begrippen nu precies inhouden. Massa In je tabellenboek vindt je dat de SI eenheid van massa

Nadere informatie

Energieopwekking door kernsplijting in een kernreactor. Kerncentrale van Tihange(bij Hoei)

Energieopwekking door kernsplijting in een kernreactor. Kerncentrale van Tihange(bij Hoei) Energieopwekking door kernsplijting in een kernreactor Kerncentrale van Tihange(bij Hoei) 1 Benodigdheden Chemisch element: Uranium Uranium kent verschillende isotopen Definitie isotoop? 2 Benodigdheden

Nadere informatie

Tolpoortje RELATIVITEIT KEPLER 22B. 200 m. aket. Naam: Klas: Datum:

Tolpoortje RELATIVITEIT KEPLER 22B. 200 m. aket. Naam: Klas: Datum: KEPLER 22B RELATIVITEIT KEPLER 22B Tolpoortje chterste krachtveld de raket binnen is. aket 200 m Krachtveld. het tolsystee zet zodra he krachtveld a Naam: Klas: Datum: KEPLER 22B KEPLER 22B VERDER EN VERDER

Nadere informatie

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur).

In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). 2.1 Wat is licht? In de figuur hieronder zie je een Elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische golf. Andere voorbeelden

Nadere informatie

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel.

Radioactiviteit werd ontdekt in 1898 door de Franse natuurkundige Henri Becquerel. H7: Radioactiviteit Als een bepaalde kern van een element te veel of te weinig neutronen heeft is het onstabiel. Daardoor gaan ze na een zekere tijd uit elkaar vallen, op die manier bereiken ze een stabiele

Nadere informatie

natuurkunde 1,2 Compex

natuurkunde 1,2 Compex Examen HAVO 2007 tijdvak 1 woensdag 23 mei totale examentijd 3,5 uur natuurkunde 1,2 Compex Vragen 1 tot en met 17 In dit deel van het examen staan de vragen waarbij de computer niet wordt gebruikt. Bij

Nadere informatie

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben.

(a) Noem twee eigenschappen die quarks en leptonen met elkaar gemeen hebben. Werkbladen HiSPARC Elementaire deeltjes C.G.N. van Veen 1 Hadronen Opdracht 1: Elementaire deeltjes worden onderverdeeld in quarks en leptonen. (a) Noem twee eigenschappen die quarks en leptonen met elkaar

Nadere informatie

Exact Periode 5 Niveau 3. Dictaat Licht

Exact Periode 5 Niveau 3. Dictaat Licht Exact Periode 5 Niveau 3 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is

Nadere informatie

NATIONALE NATUURKUNDE OLYMPIADE. Tweede ronde - theorie toets. 21 juni beschikbare tijd : 2 x 2 uur

NATIONALE NATUURKUNDE OLYMPIADE. Tweede ronde - theorie toets. 21 juni beschikbare tijd : 2 x 2 uur NATIONALE NATUURKUNDE OLYMPIADE Tweede ronde - theorie toets 21 juni 2000 beschikbare tijd : 2 x 2 uur 52 --- 12 de tweede ronde DEEL I 1. Eugenia. Onlangs is met een telescoop vanaf de Aarde de ongeveer

Nadere informatie

Schoolexamen Moderne Natuurkunde

Schoolexamen Moderne Natuurkunde Schoolexamen Moderne Natuurkunde Natuurkunde 1,2 VWO 6 16 april 2007 Tijdsduur: 90 minuten eze toets bestaat uit twee delen (I en II). In deel I wordt basiskennis getoetst via meerkeuzevragen. eel II bestaat

Nadere informatie

Ar(C) = 12,0 u / 1 u = 12,0 Voor berekeningen ronden we de atoommassa s meestal eerst af tot op 1 decimaal. Voorbeelden. H 1,0 u 1,0.

Ar(C) = 12,0 u / 1 u = 12,0 Voor berekeningen ronden we de atoommassa s meestal eerst af tot op 1 decimaal. Voorbeelden. H 1,0 u 1,0. 5. Chemisch rekenen 1. Atoommassa De SI-eenheid van massa is het kilogram (kg). De massa-eenheid die we voor atomen gebruiken is u (unit). 1 27 1 u 1,66 10 kg m 6 C-nuclide m(h) = 1,0 u m(o) = 16,0 u m(c)

Nadere informatie

Later heeft men ook nog een ongeladen deeltje met praktisch dezelfde massa als een proton ontdekt (1932). Dit deeltje heeft de naam neutron gekregen.

Later heeft men ook nog een ongeladen deeltje met praktisch dezelfde massa als een proton ontdekt (1932). Dit deeltje heeft de naam neutron gekregen. Atoombouw 1.1 onderwerpen: Elektrische structuur van de materie Atoommodel van Rutherford Elementaire deeltjes Massagetal en atoomnummer Ionen Lading Twee (met een metalen laagje bedekte) balletjes,, die

Nadere informatie

Lichtsnelheid Eigenschappen

Lichtsnelheid Eigenschappen Sterrenstelsels Lichtsnelheid Eigenschappen! Sinds eind 19 e eeuw is bekend dat de lichtsnelheid:! In vacuüm 300.000km/s bedraagt! Gemeten met proeven! Berekend door Maxwell in zijn theorie over EM golven!

Nadere informatie

Eindexamen natuurkunde 1 vwo 2004-I

Eindexamen natuurkunde 1 vwo 2004-I - + Eindexamen natuurkunde vwo 2004-I 4 Beoordelingsmodel Opgave Valentijnshart Maximumscore 4 uitkomst: b 2,9 mm Bij het fotograferen van een voorwerp in het oneindige geldt: b f Bij het fotograferen

Nadere informatie

Speciale relativiteitstheorie: de basisconcepten in een notedop

Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie:... 1 de basisconcepten in een notedop... 1 1. Klassieke Relativiteit... 1 1.1 Twee waarnemers zien een verschillende

Nadere informatie

Eindexamen scheikunde havo 2001-II

Eindexamen scheikunde havo 2001-II Eindexamen scheikunde havo 00-II 4 Antwoordmodel Energievoorziening in de ruimte et (uiteenvallen van de Pu-38 atomen) levert energie dus het is een exotherm proces. er komt energie vrij aantal protonen:

Nadere informatie

Inleiding stralingsfysica

Inleiding stralingsfysica Inleiding stralingsfysica Historie 1896: Henri Becquerel ontdekt het verschijnsel radioactiviteit 1895: Wilhelm Conrad Röntgen ontdekt Röntgenstraling RadioNucliden: Inleiding Stralingsfysica 1 Wat maakt

Nadere informatie

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1

Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1 Eindronde Natuurkunde Olympiade 2015 theorietoets deel 1 Opgave 1 Botsend blokje (5p) Een blok met een massa van 10 kg glijdt over een glad oppervlak. Hoek D botst tegen een klein vastzittend blokje S

Nadere informatie

Week-end van de wetenschap, Groningen, 6 oktober 2013 Ivo van Vulpen

Week-end van de wetenschap, Groningen, 6 oktober 2013 Ivo van Vulpen Zoektocht naar de elementaire bouwstenen van de natuur Week-end van de wetenschap, Groningen, 6 oktober 2013 Ivo van Vulpen CERN in Genève, Zwitserland Deeltjesfysica 10-15 m atoom kern Wat zijn de bouwstenen

Nadere informatie

Uitwerkingen. T2: Verbranden en Ontleden, De snelheid van een reactie en Verbindingen en elementen

Uitwerkingen. T2: Verbranden en Ontleden, De snelheid van een reactie en Verbindingen en elementen Uitwerkingen T2: Verbranden en Ontleden, De snelheid van een reactie en Verbindingen en elementen 2008 Voorbeeld toets dinsdag 29 februari 60 minuten NASK 2, 2(3) VMBO-TGK, DEEL B. H5: VERBRANDEN EN ONTLEDEN

Nadere informatie

Sterrenkundig Practicum 2 3 maart Proef 3, deel1: De massa van het zwarte gat in M87

Sterrenkundig Practicum 2 3 maart Proef 3, deel1: De massa van het zwarte gat in M87 Proef 3, deel1: De massa van het zwarte gat in M87 Sterrenkundig Practicum 2 3 maart 2005 Vele sterrenstelsels vertonen zogenaamde nucleaire activiteit: grote hoeveelheden straling komen uit het centrum.

Nadere informatie

Einstein s Relativiteitstheorie Gastles voor 5-6 VWO klassen (met drie opgaven)

Einstein s Relativiteitstheorie Gastles voor 5-6 VWO klassen (met drie opgaven) Einstein s Relativiteitstheorie Gastles voor 5-6 VWO klassen (met drie opgaven) Prof. Pierre van Baal, Instituut-Lorentz voor Theoretische Natuurkunde, Universiteit Leiden Webversie met extra verwijzingen:

Nadere informatie

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Albert Einstein en Euclides Geboren te Ulm op 14 maart 1879 Als kind geinteresseerd in Wiskunde en wetenschappen:magneten,electromotoren, wiskundige

Nadere informatie

Foutenberekeningen Allround-laboranten

Foutenberekeningen Allround-laboranten Allround-laboranten Inhoudsopgave INHOUDSOPGAVE... 2 LEERDOELEN :... 3 1. INLEIDING.... 4 2. DE ABSOLUTE FOUT... 5 3. DE KOW-METHODE... 6 4. DE RELATIEVE FOUT... 6 5. GROOTHEDEN VERMENIGVULDIGEN EN DELEN....

Nadere informatie

Thermische Fysica 2 - TF2 Statistische Fysica en Sterevolutie

Thermische Fysica 2 - TF2 Statistische Fysica en Sterevolutie Thermische Fysica 2 - TF2 Statistische Fysica en Sterevolutie Joost van Bruggen 0123226 Universiteit Utrecht - Faculteit Natuur- en Sterrenkunde (2004) 1 2 Samenvatting In deze paper wordt met behulp van

Nadere informatie

Detectie van kosmische straling

Detectie van kosmische straling Detectie van kosmische straling muonen? geproduceerd op 15 km hoogte reizen met een snelheid in de buurt van de lichtsnelheid levensduur = 2,2.10-6 s s = 2,2.10-6 s x 3.10 8 m/s = 660 m = 0,6 km Victor

Nadere informatie

Evolutie van sterren

Evolutie van sterren Evolutie van sterren In deze aflevering van VESTA eerst een overzicht van onze astronomische kennis tot ± 1945. [Voor een aantal Vestadonateurs misschien allang bekend]. Reeds in de verre oudheid wisten

Nadere informatie

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal

Hoofdstuk 5 Straling. Gemaakt als toevoeging op methode Natuurkunde Overal Hoofdstuk 5 Straling Gemaakt als toevoeging op methode Natuurkunde Overal 5.1 Straling en bronnen Eigenschappen van straling RA α γ β 1) Beweegt langs rechte lijnen vanuit een bron. 2) Zwakker als ze verder

Nadere informatie

Theorie: Snelheid (Herhaling klas 2)

Theorie: Snelheid (Herhaling klas 2) Theorie: Snelheid (Herhaling klas 2) Snelheid en gemiddelde snelheid Met de grootheid snelheid geef je aan welke afstand een voorwerp in een bepaalde tijd aflegt. Over een langere periode is de snelheid

Nadere informatie

Wetenschappelijke Begrippen

Wetenschappelijke Begrippen Wetenschappelijke Begrippen Isotoop Als twee soorten atoomkernen hetzelfde aantal protonen heeft (en dus van hetzelfde element zijn), maar een ander aantal neutronen (en dus een andere massa), dan noemen

Nadere informatie

Tentamen Verbrandingstechnologie d.d. 9 maart 2009

Tentamen Verbrandingstechnologie d.d. 9 maart 2009 Tentamen Verbrandingstechnologie d.d. 9 maart 2009 Maak elke opgave op een afzonderlijk vel papier Diktaat mag gebruikt worden, aantekeningen niet Succes! Opgave 1: Diversen (a) Geef de algemene reactie

Nadere informatie

HOVO: Gravitatie en kosmologie OPGAVEN WEEK 1

HOVO: Gravitatie en kosmologie OPGAVEN WEEK 1 HOVO: Gravitatie en kosmologie OPGAVEN WEEK Opgave : Causaliteit In het jaar 300 wordt door de Aardse Federatie een ruimteschip naar een Aardse observatiepost op de planeet P47 gestuurd. Op de maan van

Nadere informatie

4) De verhouding bereken van de straal en de ringen van Saturnus en dus is het veel kleiner dan een DVD => 1punt analoog antwoordmodel.

4) De verhouding bereken van de straal en de ringen van Saturnus en dus is het veel kleiner dan een DVD => 1punt analoog antwoordmodel. Notulen examenbespreking Nina examen vwo 2012 VWO Natuurkunde pilot 2012 I 22 mei 2012 Steekproef nagekeken examens: Sted Gym Nijmegen: 13 lln 45 punten 3 onv Coornhert Gym Gouda: 11 lln 50 punten 0 onv

Nadere informatie

Wiskundige vaardigheden

Wiskundige vaardigheden Inleiding Bij het vak natuurkunde ga je veel rekenstappen zetten. Het is noodzakelijk dat je deze rekenstappen goed en snel kunt uitvoeren. In deze presentatie behandelen we de belangrijkste wiskundige

Nadere informatie

Quantummechanica en Relativiteitsleer bij kosmische straling

Quantummechanica en Relativiteitsleer bij kosmische straling Quantummechanica en sleer bij kosmische straling Niek Schultheiss 1/19 Krachten en krachtdragers Op kerndeeltjes werkt de zwaartekracht. Op kerndeeltjes werkt de elektromagnetische kracht. Kernen kunnen

Nadere informatie

methode 2: Voor de vervangingsweerstand van de twee parallel geschakelde lampen geldt:

methode 2: Voor de vervangingsweerstand van de twee parallel geschakelde lampen geldt: Uitwerkingen natuurkunde Havo 1999-I Opgave 1 Accu 3p 1. Het vermogen van de lampen wordt gegeven door P = VI. Dus de accu moet een stroom leveren van I = P/V = 100/12 = 8,33 A. De "capaciteit" wordt berekend

Nadere informatie

Exact Periode 5. Dictaat Licht

Exact Periode 5. Dictaat Licht Exact Periode 5 Dictaat Licht 1 1 Wat is licht? In de figuur hieronder zie je een elektromagnetische golf: een golf die bestaat uit elektrische en magnetische trillingen.(zie figuur). Licht is een elektromagnetische

Nadere informatie