Extra oefening bij hoofdstuk 1

Maat: px
Weergave met pagina beginnen:

Download "Extra oefening bij hoofdstuk 1"

Transcriptie

1 Era oefening ij hoofdsuk a Een goede venserinselling voor de funie f is : X min en X ma en Y min eny ma 0. Voor de funie g X min 0 en X ma 0 en Y min 0 eny ma 0. y y Veriale asympoo, horizonale asympoo y 0. Bij de funie f mag nie worden ingevuld, dus D f,, en omda de reuk geen 0 kan worden is de uikoms nooi, dus B f,, De funie g is een paraool, dus D g, me de rekenmahine kun je vinden da de op van deze paraool he pun (, 7 )is, dus B g 7,. De funie h is een worelfunie. Onder he woreleken moe een geal groer of gelijk aan nul saan. Je kun zien of me de rekenmahine epalen da dan 80 moe zijn. D h,80 B h 0,. a PQ f () + 8 P(, + 8 ). Oppervlake OPQ A () OQ PQ ( + 8) +. 0 < <. d y O e De op van de grafiek lig ussen 0 en, dus maimale oppervlake OPQ A()

2 Era oefening ij hoofdsuk a De noemer van de funie f is alijd groer dan 0, dus de funie f esaa voor alle. + 0 ( + )( ) 0 of. De veriale asympoen van de grafiek van g zijn dus en. Wanneer seeds groere posiieve of negaieve waarden aanneem, zal ij eide funies de funiewaarden seeds diher ij 0 komen. De horizonale asympoo is dus ij eide funies y 0. d Me de rekenmahine kun je de op van de funie f vinden, di is (, ). De op van de grafiek van de funie g is (, ). Dus B f 0, en B g, 0, a 9 ( 9 ), hieraan kun je zien da de funie f nul word als 0, of. Dus D f, 0,. Buien deze inervallen saa er onder he woreleken een negaief geal en da kan nie. Me rekenmahine epaal je dan de op en vind je: B f 0;, 9

3 Era oefening ij hoofdsuk a Neem als venserinselling: X min en X ma en Y min 00 eny ma , ( 00) 0 0 of 00 de nulpunen zijn 0, 0 en 0. Me de rekenmahine vind je: (, ; 00),( 0, 0) en (, ; 00) a 8p+ ( p+ ) ( p) 8p p+ 9 + p p p p 7 p 7 ( ) of of 9 of ( + 7) 0 ( )( 9) 0 0, of 9 d 8 ( 8) Dus of of 7 e ( ) 0 ( )( + ) 0 0, of a of 7 Me de rekenmahine. Plo Y ( ) en Y en epaal he snijpun. De oplossing is 07, Me de rekenmahine. Plo Y en Y + + en + epaal de snijpunen. De oplossing is,, 07, of, 7 d e 0, Me de rekenmahine. Plo Y 0, 8 + en Y 0 en epaal he snijpun. De oplossing is, 9. a Wanneer je de venserinselling aanpas, ijvooreeld door in e zoomen, dan zie je da er wee snijpunen zijn. 0, +, 0+ 0, 0, +, 0 0, 0 De disriminan D 0, 0, 0, 0, 000 > 0, dus wee oplossingen. ( 0, en ) Eers de vergelijking en dan me een plo de ongelijkheid oplossen. a de oplossing is dan, ( )( + ) 0 of. De oplossing is dan,, 9

4 Era oefening ij hoofdsuk of de oplossing word dan, d De oplossing word dan (le op he randpun! ),. 9

5 Oefenoes ij de hoofdsukken en a Me de insellingen X min en X MAX en Y min 00 en Y ma 00 krijg je de grafiek zo in eeld. Plo de grafiek van de funie f.me de rekenmahine vind je de oppen (, 8) en (, 8). Plo ook nog de grafiek van y 9 en epaal me de rekenmahine de snijpunen. Je vind:,,, 0 en 77,. d Plo de grafiek van y. De snijpunen worden 798,,, 9 en 9,. De oplossing van f ()< is dan, 798,, 9; 9,. e f () ( 8) 0 0 of 8 0, 8 of 8. a y 7 f g h O 7 Veriale asympoo, wan voor is de noemer gelijk aan 0, en horizonale asympoo y wan voor groe waarden van word de reuk zo goed als nul. f () Dus f () heef oplossing,,. Denk om de asympoo!! d Er zijn geen oplossingen voor p, wan dan zou de reuk gelijk moeen worden aan 0 en da kan nie. e Plo eide grafieken en epaal me de rekenmahine de snijpunen. De snijpunen zijn: (, 7;, 8) en ( 90, ;, ). f f () < g () < h () geld vanaf de asympoo o he snijpun van g en h. Dus ;, 90, maar de eponeniële funie h () sijg ij groe seeds sneller, dus h en g snijden elkaar nog een keer namelijk ij, 7. Dus f < g < h voor ;, 90, 7; a f( 0) 00, 0 9 Er moe gelden 00, 0 00, Dus D f 0, 0. y 0 0 O 0 0 9

6 Oefenoes ij de hoofdsukken en d f () 0, 0 0, 0, e 00, 7, 7 7 of 7. Plo eide grafieken en ereken he snijpun. Lees he anwoord af ui de grafieken. f () > g () 00, 0, 07 00, 0, 00 0, of 0. De oplossing van de ongelijkheid word dus: 0, 0 a C( 8, ). + D(, ). Nu is de -oördinaa van A en dus van D gegeven. Je moe nu invullen in y + y + D(, ). C heef dus y-oördinaa en lig op y C(, ). B lig reh onder C B(, 0) Oppervlake ABCD AB BC 0. Je moe nu a invullen in y + y a+ Da (, a + ). C heef dus y-oördinaa a + en lig op y a+ a 7 7 a C( 7 a, a + ). B lig reh onder C B( 7 a, 0 ). d ABCD is een vierkan als AB BC 7 a a a+ a+ 7 a+ a a e Oa () AB BC ( 7 a a) ( a+ ) ( 7 a)( a+ ) 7a+ a a a + a + f Er moe gelden: AB > 0 7 a > 0 a < 7 a < en BC > 0 a+ > 0 a > Dus he domein van O()is,. g Plo O() en epaal de op me de rekenmahine. Je vind (, ). 8 Voor a is de oppervlake maimaal. 8 a Bij al deze funies is de derde mah de hoogse mah van, en zijn de andere mahen wee en/of één en/of nul. Bij de funies f, g en h kun je de nulpunen ea epalen, ij de funie k nie. f () ( + ) 0 0 of. g () h () 0 ( )( + ) 0 0, of. k () me de rekenmahine 07, a a f(). Top (, ), nulpunen 0 en y O 9

7 Oefenoes ij de hoofdsukken en a f() ; a f() ; a 0 f() ; a f() y a a O Alle grafieken gaan door he pun (, 0 0) d f () a 0 ( a ) 0 0of a e f () 0 ( + ) 0 0 of op voor. De op is (, ) f () 0 ( + ) 0 0 of op voor. De op is (, ) f () 0 0 op voor 0. De op is ( 0, 0) f () 0 ( ) 0 0 of op voor. De op is (, ) f Nulpunen zijn 0en a, dus de op daar ussen dus voor a. f( a) a a ( a) a a a dus de op ( a, a ). g a 0 a 0 9

8 Era oefening ij hoofdsuk a Toename % per jaar groeifaor, per jaar. Beginhoeveelheid 07. Dus f () 07,, in jaren. Rene,% per jaar groeifaor,0 per jaar. Inleg e 000,-. Dus f () 000, 0, in jaren Afname % per 0 jaar groeifaor per 0 jaar 0,7. Beginhoeveelheid 000 on. Dus f () , in perioden van 0 jaar. ( 0 Of: groeifaor 0,7 per 0 jaar groeifaor 07, ) 0, 9909 per jaar. f () 000 0, 9909 me in jaren. d Verdrievoudiging per dag groeifaor is per dag. eginhoeveelheid miljoen. Dus f () me in dagen en f() in miljoenen. a () () 0 7 d () + a a a a a () ( + ) ( ) d p p p p p p p ( ) ( ) + p a f () g 0 door (0, ) f() 0 g. f () g door (, ) f() g g 0, f () 0, h () g door (, 7) h() g 7 en door (, 8) h() g 8. Dus g 7 eerse in de weede invullen geef g 8 g g g g g. () 7 7 0,. 7 Dus h () 0, ( ). 7 + a Fou wan Wel juis is Fou wan ( ) Fou wan ( ) : + d Fou wan

9 Era oefening ij hoofdsuk a, 00 Plo de grafieken Y, eny 00. Bepaal me de rekenmahine he snijpun. Je vind 8,. 0, < 0,. Plo de grafieken Y 0, eny 0,. Neem sherminselling X, X, Y 0 en Y 0 Bepaal me de rekenmahine he min ma min ma snijpun. Je vind. De oplossing is dan >. 0, > 0,. Me de rekenmahine kan, maar deze kan ook ea. + 0, > 0, () > () > > + > > >. d 0 0, 9. Plo de grafieken Y 0 0, eny 9. Bepaal me de rekenmahine he snijpun. Je vind 07,. 7a ( ) () ( ) 7 9 ( ) ( ) d (,) 0 00, (,) 0 ( 0, ) + e f () () 7 ( ) ( ) 98

10 Era oefening ij hoofdsuk a Plo de grafieken: Y 0 en Y en epaal he snijpun. Je vind,. Plo de grafieken Y, en Y 77, en epaal he snijpun. Je vind 0, en 0,. Plo de grafieken Y en Y en epaal he snijpun. Je vind 0, en 0.. de oplossing is dan ; 0,, 0; d Plo de grafieken Y + en Y, en epaal he snijpun. Je vind 09, en 0, 9 De oplossing is dan ( denk om de veriale asympoo!) 09, ; 0 0; 0, 9. a + 9 7, 0, 9 of, 9 w + 9 w w w 08, 9 7 d 7,, 0, 7 9, e > eers de vergelijking oplossen ( ) 0 0 of me de grafieken vind je de oplossing, 0 0,. f eers de vergelijking oplossen + 0 ( 8) 0 0 of. De oplossing is dan 0,. a Elke kuus heef zijvlakken. Door he egen elkaar plaasen vallen er vlakken af voor de oppervlake. Dus de oppervlake is O ( ) r 8r m De inhoud is V r m 0 0 O 0 8r 0 r r 7, m De inhoud is dan V ( ) 8, m V 00 r 00 r r 9, m 8 De oppervklake is dan O 8 ( ) 8, 90 m d O V 8r r r 8r 0 r ( r 9) 0 r 0 of r. He kan dus als r m. a y O g f D f 0, en B f 0, en D en B g g 99

11 Era oefening ij hoofdsuk ( ) ( ) 0 ( ) 0 0of 0of. 7 7 f () en g () d f () e g () ( ) 8 a f () In de uur van 0 is heel klein, de funie lijk dan dus he mees op. Voor groe waarden van is juis heel klein. De grafiek lijk dan dus he mees op die van 00

12 Oefenoes ij de hoofdsukken en a Toename me,% per jaar, dus de groeifaor is,0 per jaar C (),, 0 in miljarden, in jaren., juli 00 kom overeen me, C(, ),, 0, 07 miljard inwoners. Opgelos moe worden,, 0, 70.Plo eide grafieken en epaal he snijpun. Je vind 0, 7. Dus in he jaar 09 is de evolking,70 miljard. d --00 kom overeen me. De oename over he jaar 00 vind je me C() C(),, 0,, 0 0, 09 miljard, dus 9 miljoen. e Opgelos moe worden, 0 me de rekenmahine geef di 9, 8, dus na ongeveer 0 jaar. ( ) f Groeifaor per jaar is, dus de groeifaor per jaar is, 09. ( ) ( ) Op januari 999 was de Indiase evolking 8 9 miljoen De formule I () 0, 9, 09 g Plo eide grafieken en epaal he snijpun. Je vind,.dus in he jaar 00 heen ze evenveel inwoners. a y 0 8 O D f, 0 0, f () of De grafiek van f heef veriale asympoo 0 en horizonale asympoo y 8. d f () ,, of,. a f () + + g () + ( ) + ( ) h () ( ) 8 8 a y 0 g 8 f O ;,,, (, ), (), dus f () g (),, (),,,,, 0

13 Oefenoes ij de hoofdsukken en 0 g() 0, ( ), gdoor he pun (0;,) op de y-as, dus h door he pun (;,). g(), ( ) g door he pun (, ), dus h door he pun (, ). g(), ( ) g door he pun (,), dus h door he pun (,) 0 d g (), ( ) spiegelen in de veriale as geef k (), ( ), (),,, vervolgens naar rehs vershuiven geef h (),,,,,, Dus h (),. Snijpun me de veriale as, dus 0 h( 0) Snijpun me de veriale as is (,) 0. De groeifaor van h is, e h (), zie hieroven. 0 7 a 07, ,,0 of, 0 8,, 0, d p 7 p p p ( ) ( ), e ( ) f geen oplossing wan he linkerlid is alijd groer dan 0. g, h 0 ( ) 0 0 of 0 of of a De walvis eva ij leven 0,00000 mg per kilo, dus eva de walvis 0,0 mgc. Opgelos moe worden () 0, me in perioden van 70 jaar. me de rekenmahine geef di, 9. Dus na, jaar is er nog 0 % over. Toen de mammoe overleed was er 700 0, , 007 mg aanwezig. Er moe dus gelden 0 007, ( ) 0, 00 me de rekenmahine, 79. De mammoe is dus, jaar geleden gesorven, dus ongeveer jaar geleden. 7a Invullen van de gegevens geef: 0, 0, 7 0,, 0, 008 G 0, 0, 7 G 0, ( ) G 0,, G, 9 kg 0, 0, 7 0, H 0, 008 G 80 0, 88 G Dus 09,. 0, 0, 7 H hans 0, , 80 H G 0 G,,, ( ) 0,,, 7, G 7, 0 kg. Frans Dus Frans weeg ongeveer 0 kg. d Voor: H , L,, 7 0, 0 L, voor Na: H , L,, 7 0, 0 L, 7 na Haar huidoppervlake is dus me 0, 0 0, 0 00% 9, % afgenomen. 0, 0 0

14 Era oefening ij hoofdsuk a C 00 A B Er zijn meerdere mogelijkheden, he vershil zi hem in de afmeingen, de vorm lijf hezelfde. Twee van de drie hoeken was genoeg gewees wan de drie hoeken samen zijn alijd 80. Ja, er is maar één driehoek mogelijk die voldoe aan deze gegevens. d Wanneer je één van de gegevens weglaa lig de driehoek nie meer eenduidig vas. a C F A B D E In een gelijkenige driehoek zijn de asishoeken gelijk. A B ( 80 C) ( 80 F) D E. Congrueniegeval HZH. a D E C S A B AE AS Driehoek ASE is gelijkzijdig EAD 0 DAS, AD AB driehoek ABD is gelijkzijdig SAB 0 DAS AE AS EAD SAB 0 DAS ( ZHZ) ADE ABS AD AB 0

15 Era oefening ij hoofdsuk Bewijs: ADE ABS DE BS BSCis gelijkzijdig BS CS DE CS a C A B P ABC is gelijkenig CAB CBA AP BQ CP CQ PBC en QAC d/e Te ewijzen PB QA Bewijs: CP CQ PCB QCA ( ZHZ) CPB CQA PB QA. CB CA Q 0

16 Era oefening ij hoofdsuk a 0 ( ) 0 0 of ( )( + 7) ( 7)( ) 0 of of 0 of ( )( + ) 0, of 0 ( )( ) ( ) of ( ) 9 De oplossingen zijn dus of d ( ) of ( ) + 0 of ( ) 0 of of 8 De oplossingen zijn dus, + of e 7 + 0Sel a Je krijg dan: a 7a+ 0 ( a )( a ) 0 a of a a 9 en a De oplossingen zijn dus 9 of. f 8 ( ) ( ) 0 of 8 of 8 ( ) of 8 Sel a Je krijg dan: 8 a a a a+ 8 0 ( a )( a ) 0 a of a a en a De oplossingen zijn dus of a D D f g 0, 0 0 of 0 of 0 (verval) of of 0 y 0 8 O 0

17 Era oefening ij hoofdsuk d 0 of 0 of of + 0 ( )( + ) 0 of (verval) of + 0 ( + )( ) 0 of (verval) De snijpunen zijn dan (, 0 0),(, ) en (, ). e Me de grafiek en de erekende snijpunen : f () g () 0 of. a a 0 de weede in de eerse invullen geef a a a 0( a ) a 0a+ 0 a 0a+ 9 ( a )( a 9) 0 a of a 9 a 0 0 en a 9 8 De oplossingen zijn dus a en 0 of a 9 en. a de weede in de eerse invullen geef a+ 7 a 7 ( 7 ) of 0 a 7 of a 7 De oplossingen zijn dus a en of a en. a s O s 9, s s 9, 9, s klop nie wan s g s g g g s klop wel wan s g s g g s g s g klop wan s g g s s s g s klop nie wan s g s s s g g g g 0 a TM + OM OT h + h h TM + OM OT h + ( ) h h

18 Era Hoofdsuk oefening - ij Ruimefiguren hoofdsuk h, d N is he midden van AT. Teken de lijn NN evenwijdig aan TM, dan is N he midden van MA, dus ON '. Ook geld dan da NN ' h. T h N O M N A Dus N' N + ON ' ON ON ( h) + ( ) e Maak geruik van he resulaa van opdrah. ON ( h) + ( ) ( ) + ( ) ( ) + ( ) h ( 9 ) h

19 Oefenoes ij de hoofdsukken en C D P A B Gegeven: ABC, CAD DAB, CP CD Te ewijzen: APC ADB Bewijs: CP CD CPD CDP CPA BDA APC ADB CAP DAB a Te ewijzen: CED CDE Bewijs: AC CB CAE CBD 90 ( HZH) ACE BCD CE CD ACE BCD CED is gelijkenig CED CDE. CAB CBA ( 80 ACB) ( 80 ECD) CED CDE Dus alle hoeken van ABC en EDC zijn gelijk ABC EDC Op dezelfde wijze is BDC AEC a ( + )( + ) a ( + ) ( a+ )( a ) a+ + + a + a + a+ a + a+ a a a a a ( )( + + ) d ( + )( ) + + ( + ) ( + + ) ( + + )( ) ( + + )( ) ( + + )( ) + ( + + )( ) ( + + )( ) a De uispraken I, III en IV zijn juis. Uispraak II is onjuis, wan een gelijkenig rapezium heef ook één symmerieas en is geen vlieger. De uispraken I en IV zijn gelijkwaardig. Gegeven: een vierhoek ABCD, AC is symmerieas Te ewijzen: AB AD en BC CD Bewijs: ( Me S ( P ) Q word edoeld da Q he spiegeleeld is van pun P na AB spiegeling in de lijn AC). 08

20 Oefenoes ij de hoofdsukken en S ( D) B AC AC is symmerieas S ( AD) AB AD AB AC S ( A) A AC S ( C) C AC AC is symmerieas S ( CD) CB CD CB AC S ( D) B AC Gegeven vierhoek ABCD me AB AD en BC CD Te ewijzen: AC is symmerieas. Bewijs: AD AB CD CD ( ZZZ) ACD ACB DAC BAC AC is deellijn AC AC S ( D) B AC is symmerieas. AC Uispraak III Gegeven : vierhoek ABCD. AC en BD snijden elkaar in pun S. AS CS en BS DS. Te ewijzen: ABCD is een parallellogram. Bewijs; AS CS BS DS ( ZHZ) ASB CSD AB CD ASB CSD () AS CS BS DS ( ZHZ) ASD CSB AD CB ASD CSB () Ui () en () volg ABCD is een parallellogram. a y 0 of y eerse invullen in de weede vergelijking geef: y+ y y+ y y y of y y + 0 ( ) 0 0 of De oplossingen zijn dus 0en y, 0 en y, en y + y p y+ p de eerse invullen in de weede geef: + y ( y+ p) + y y yp + p + y y yp+ p 0 He selsel heef preies één, oplossing als de diriminan van de weedegraads vergelijking gelijk is aan 0. Dus: ( p) ( p ) 0 p p p 88 p p of p Invullen in de weedegraads vergelijking: p y + y+ 0 y p y y+ 0 y 09

21 Oefenoes ij de hoofdsukken en a P B m A S Ui de onsruie volg PA AS SB BP PASB is een rui PS AB m In da geval word PASB een vlieger wan dan is PA BP vanwege de eerse sap en AS SB vanwege de weede sap. Ook ij een vlieger saan de diagonalen loodreh op elkaar. 7a ( ) ( ) ( ) ( ) ( ) ( ) geen oplossing. ( ) < + splisen in wee ongelijkheden < ( ) < < < geen oplossing ( ) < + < + < of + 8 De oplossing word dan < < ( ) ( )( 8) 0 of 8 Conrole geef 8 voldoe nie. de oplossing is dus. d < < 0 < ( ) < + < 0 < ( ) < + < < geen oplossing > < ( ) < < > De oplossing is dus < of > e + ( + ) log log log 0

22 Oefenoes ij de hoofdsukken en 8a V V C ( ) V 0, ( 0 ) 0, 0, 0, lier oevoegen. TOE B TOE C 8 Eindvolume is dan 0, lier zouoplossing. V V V V V C C + + ( ) V + EIND B TOE B B B C C V C B C 9a CAB CBA AD CD ACD CAD CAB ACB+ CAB + ABC 80 ACD + CAB+ CAB 80 CAB+ CAB + CAB 80 CAB 80 CAB 7 CAB ACD C ADB 80 DAB DBA CAB ABD 7 ABC BDA ABC BDA 7 ADB ABD 7 BDA is gelijkenig AB AD q Gegeven was AD CD CD q en AC BC BC p BD BC CD p q () AB AC q p Ook geld: ABC BDA p BD q BD q () BD BA BD q q Ui () en () volg BD p q p q d p q pp ( q) q p pq q p pq q 0 Di is op e vaen als p een weedegraads vergelijking me variaele p en geef dan: p q q q q q q q p q( + ) + q

23 Era oefening ij hoofdsuk 7 a Periode is π π He ampliude is Op he inerval 0, 0 snijpunen. π zijn er snijpunen dus op he inerval 0, 0 zijn er d De oppen zien ij 0, enz. De oppen zijn: (, 0 ),(, ),(, ),(, ),( 8, ),( 0, ) a De periode is π π 7, uur, dus 7 minuen uur en minuen. 0, He geijdevershil is 80 0 m. y d De formule voor Den Helder word dan: h 0 0 sin(, ( )). a De periode is π π seonden. DH Plo de grafiek en de lijnen y, en y, en epaal de snijpunen. Je vind: 07, ; 0, 8 ; 7, en, 8 op de eerse periode. De andere snijpunen zijn dan seeds een periode verder, dus: 7, ;, 8 ; 7, ;, 8 ; 7, ;, 8 ; 7, ;, 8 ; 7, ; 8, ; 7, 7 ; 78, ; 8, 7 ; 88, ; 9, 7 en 98,. a Plo de grafiek van f en de lijn y op he inerval π, π en epaal de snijpunen. je vind: 09, ; 0;, 9 en Plo de grafiek van f en de lijn y op he inerval π, π en epaal de snijpunen. je vind: π; 0, ; π; 7, en π. De oplossing van de ongelijkheid is dan : 0, ; π 7, ; π. a Plo de grafiek van Y sin( ) op he domein π, π en epaal me je rekenmahine de nulpunen. Je vind: 8, ;, 7; 07, ; 0, ; 8, ;, ; 7, ;, ; en 7, De oplossing van de ongelijkheid word dan: π;, 8, 7; 0, 7 0, ;, 8, ;, 7, ;, 7 Plo de grafiek van Y + sin( + ) en Y, op he domein π, π en epaal me je rekenmahine de nulpunen. Je vind: 0, ;, 8;, De oplossing van de ongelijkheid word: 0, ;, 8, ; π.

24 Era oefening ij hoofdsuk 7 Plo de grafiek van Y os en Y op he domein π, π en epaal me je rekenmahine de nulpunen. Je vind:, ;, ; ; 0, 8; 08, ; ;, ;, ; 7, ;, ; 9, en, 7 De oplossing van de ongelijkheid word dan: π,,, ; 0, 8; 0, 8 ;,, ;, 7 9, ;, 7, ; π d < sin sin < sin < oplossing π, π π, π

25 Era oefening ij hoofdsuk 8 a De hooge vind je door e kijken ij 0. De oren is dus 0 meer. Plo de grafiek en epaal he maimum, je vind da de maimale hooge meer is na seonden. He differeniequoiën op ;, is h(,) h( ) 0, 9 0 0, 0, m/s 0, 0, 0, He differeniequoiën op ;, 0 is h(, 0 ) h( ) 0, , 00, 0, 00 d h () h'( ) , 0 m/s 0, 0 h'( ) m/s. He anwoord is negaief omda er sprake is van een snelheid omlaag. de uikomsen van opdrah zijn dus een goede enadering. hoe kleiner he inerval hoe eer de enadering. a f () + f'( ) hellingf () Zoals ui ovensaande ael lijk is de helling 7 voor, dus in he pun (, ). Helling gelijk aan, da wil zeggen da de hellingsfunie, f'( ) + 079, a f () + f'( ) 8 f '() 8. df df f d '( ) 8 d f'( ) 8 8 d Helling gelijk aan f'( ) 8. f( ) ( ) + 9+ Dus in he pun (, ) is de helling gelijk aan. e De raaklijn in he pun (, ) is van de vorm y a+ a f'( ) y +. De lijn gaa door he pun (, ), dus + De raaklijn is : y 7 a f () 0 f'( ) 0 7 f () 0 + f'( ) 7 f () 8 8 f'( ) d g () g'( ) e hu ( ) u + h'( u) u f j () 7 j'( ) 0 a f () + snijpun me de y-as: f( 0) dus B( 0, ) Snijpun me de -as: f () He snijpun me de -as is dus A(, 0) f'( ) f'() 0 0Dus de helling in B is 0. f '( ) ( ). dus de helling in A is. y + heef helling, dezelfde helling als in A. De lijn gaa ook door A(, 0 ), wan + 0 d Raaklijn in pun B heef helling 0 en is dus horizonaal, de lijn gaa door B( 0, ). Die raaklijn is dus de lijn y.

26 Oefenoes ij de hoofdsukken 7 en 8 a y , 0, 0, 0,8 Plo evens de lijn Y en epaal de snijpunen. Je vind j 0, 79 en j 0, 80. He groeiseizoen duur dus 0, 80 0, 79 0, deel van een jaar da is 0, dagen. Op dezelfde wijze als ij opdrah duur he groeiseizoen nu 0,08 deel van een jaar en da is ongeveer dagen. he groeiseizoen is nu dagen korer. a Funie f: ampliude en periode π. Funie g: ampliude en periode π. Funie h: ampliude en periode π. De grafiek van de funie f onsaa ui die van y sin door vermenigvuldiging me en opzihe van de -as, gevolgd door een vershuiving omhoog. f () + sin. d De grafiek van de funie g onsaa ui die van y os door vermenigvuldiging me en opzihe van de y-as, gevolgd door een vermenigvuldiging me en opzihe van de -as. e g () os f De evenwihssand van de grafiek van de funie h is y. ampliude en periode π. Ook is er nog een vershuiving naar links van π. h () + sin( + π ) g h () da zijn de minima. De punen op he inerval 0, 0 zijn ( π, );( π, ) en ( π, ). a Plo de grafieken van Y os en Y en epaal de snijpunen. Je vind 0, ;, ; 7, en, 7. Plo de grafieken van Y + sin en Y en epaal de snijpunen. Je vind 8, ;, 88; 97, en, 0. De oplossing van de ongelijkheid word dan 0;, 8 88, ;, 97 0, ; sin os 0 sin 0 of os 0 0 ; π; π; π; π; π; π d sin ( + os ) 0 sin 0 of os 0; π; π; π; π De oplossing van de ongelijkheid word: 0, π π, π π, π π, π a f () asin( ) en f heef ampliude, dan is a of a. de periode is π. π f () asin( ) en f heef ampliude π, dan is a π of a π. de periode is π π f () asin( ) en f heef periode π π. Dus f () asin( ) π. Door he pun (, ) asin( π ) a. Dus a en π

27 Oefenoes ij de hoofdsukken 7 en 8 Maak eers een ael. 0 7 f() 0 0 Teken nu de punen in een assenselsel en verind deze. y a h O d Voor 0 en 9 word de funiewaarde 0, dus 0 9 De funie is een ergparaool. De op lig dus midden ussen de nulpunen, dus voor. h( ) ( ) 0, meer is de maimum hooge. De seen val omlaag van o 9. De gemiddelde snelheid in die ijd is. h() 9 h(, ) 0 0,,, dus de gemiddelde snelheid is, m/s.,, h h() 9 h() , ; h h() 9 h() , h h() 9 h() , ; h h() 9 h() , e f h De seen kom na 9 seonden op de grond. h'( ) 0. De snelheid warmee de seen op de grond kom is dan h'( 9) 0 9 m/s.

28 Oefenoes ij de hoofdsukken 7 en a f () 0 0 f'( ) g () ( + )( + ) g'( ) d h () ( )( ) h'( ) + h'() + k () + + k'( ) 8 8a Na kwarier heef hij s( ) 0, 00,, km gelopen. De gemiddelde snelheid is dan km/u. s'( ) v () 00, Beginsnelheid : v( 0) 0km/kwarier 0 km/uur Eindsnelheid: v( ) 00, 0 km/kwarier 0 km/uur. De maimale snelheid; plo Y 00, en epaal me je rekenmahne he maimum. Je vind maimale snelheid,9 km/kwarier 7,7 km/u. 9a De oprengs is eers lager dan de kosen, maar de oprengs sijg sneller dan de kosen. Nada de produie voldoende is gesegen zijn de kosen lager dan de oprengs. Op een gegeven momen daal de oprengs weer en worden de kosen uieindelijk hoger dan de oprengs. De helling geef de snelheid waarmee de kosen en de oprengs sijgen aan. wanneer die hellingen gelijk zijn sijgen zij dus even snel. Da is he geval ij een produie van ongeveer 0 à uinkaouers. De wins is he vershil ussen de oprengs en de kosen. Dus waar da vershil he groos is is de wins he groos. d De wins is eers negaief, dus verlies. daarna neem de wins oe en vervolgens weer af om ensloe weer in verlies e eindigen. Maimale wins zal er zijn als eide grafieken even serk sijgen, dus ij een produie van 0 à uinkaouers. e Voor de oprengs geld : Oprengs verkohe hoeveelheid prijs. Dus O q p q( 0, q) f O q( 0, q) en K 0, q + 0. Voor de winsfunie geld dus: W q( 0, q) ( 0, q + 0) q 0, q 0, q 0 0, q + q 0 W'( q), q +. De wins is maimal als W'( q) 0, q+ 0, q q 0 Er is dus inderdaad maimale wins ij een produie en verkoop van 0 uinkaouers per dag. 7

Overzicht Examenstof Wiskunde A

Overzicht Examenstof Wiskunde A Oefenoes ij hoofdsuk en Overzih Examensof Wiskunde A a X min 0, X max 0, Y min 0 en Y max 000. 0 lier per minuu. Als de ank leeg is, dan is W 0, dus 00 0 0 dus 0. Na 0 minuen is de ank leeg. a Neem de

Nadere informatie

Hoofdstuk 3 Exponentiële functies

Hoofdstuk 3 Exponentiële functies Havo B deel Uiwerkingen Moderne wiskunde Hoofdsuk Eponeniële funies ladzijde 6 V-a Door zih in weeën e delen vermenigvuldig he aanal aeriën per ijdseenheid zih seeds me een faor is de eginhoeveelheid,

Nadere informatie

Hoofdstuk 3 - Exponentiële functies

Hoofdstuk 3 - Exponentiële functies Hoofdsuk - Eponeniële funcies Voorkennis: Groeifacoren ladzijde 7 V-a 060, 80 8, - euro 079, 0, 9, 88 c 0, 98, - 998, V-a De facor waarmee je de oude prijs vermenigvuldig om de nieuwe prijs e krijgen is

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden 6 Blok - Vaardigheden Blok - Vaardigheden Exra oefening - Basis B-a Bij abel A zijn de facoren achereenvolgens 8 : = 6 ; 08 : 8 = 6 en 68 : 08 = 6. Bij abel A is sprake van exponeniële groei. Bij abel

Nadere informatie

Hoofdstuk 6 - Formules maken

Hoofdstuk 6 - Formules maken Hoofdsuk 6 - Formules maken ladzijde 0 V-a Formule, wan de grafiek gaa door he pun (,) 0 en formule is exponenieel. Formule heef voor x = 0 geen eekenis, erwijl de grafiek door he pun (0, 3) gaa. Formule,

Nadere informatie

Hoofdstuk 3 - De afgeleide functie

Hoofdstuk 3 - De afgeleide functie ladzijde 7 V-a Plo de grafiek van y = x + x +. Me al-zero vind je x 8,. Plo ook de grafiek me y = x+ 5. Me al-inerse vind je x 89, en y= g( 89, ),. V-a d Exa, wan de vergelijking is lineair. Me de rekenmahine,

Nadere informatie

C. von Schwartzenberg 1/11

C. von Schwartzenberg 1/11 G&R havo A deel C von Schwarzenberg 1/11 1a m 18:00 uur He verbruik was oen ongeveer 1150 kwh 1b Minimaal ongeveer 7750 kwh (100%), maimaal ongeveer 1150 kwh (145,%) Een oename van ongeveer 45,% 1c 1d

Nadere informatie

Hoofdstuk 7 - Logaritmische functies

Hoofdstuk 7 - Logaritmische functies Hoodsuk 7 - Logarimishe unies ladzijde 0 V-a De dagwaarde egin op 000 en daal naar 000. Dus: 000 g 000 = = 06 ; g = 000 06 0 909. = 000 g ; Op ijdsip = 0 is de dagwaarde 000. De groeiaor g 0 909 dus W

Nadere informatie

Hoofdstuk 1 Lineaire en exponentiële verbanden

Hoofdstuk 1 Lineaire en exponentiële verbanden Hoofsuk Lineaire en exponeniële veranen lazije A: Geen lineair veran, als x me oeneem, neem y nie sees me ezelfe waare oe. B: Lineair veran, als x me oeneem, neem y sees me, oe. C: Geen lineair veran,

Nadere informatie

Hoofdstuk 2 - Formules voor groei

Hoofdstuk 2 - Formules voor groei Moderne wiskunde 9e ediie Havo A deel Uiwerkingen Hoofdsuk - Formules voor groei bladzijde 00 V-a = 08, ; 870 08, ; 70 0, 8; 60 00 00 870 70 08,, gemiddeld 0,8 b De beginhoeveelheid is 00 en de groeifacor

Nadere informatie

op het interval 5, 15 betekent 5 x 15. 4b x op het interval 6, 10 betekent 6 x < 10. 5d Bij 3 < x π hoort het interval 3, π

op het interval 5, 15 betekent 5 x 15. 4b x op het interval 6, 10 betekent 6 x < 10. 5d Bij 3 < x π hoort het interval 3, π G&R havo B deel Veranderingen C. von Schwarzenberg / a b c Tussen en uur. Van en uur neem de sijging oe. Van o 6 uur neem de sijging af. Van o 8 uur neem de daling oe. Van 8 o uur neem de daling af. 6,,,,,

Nadere informatie

Hoofdstuk 3 - Exponentiële functies

Hoofdstuk 3 - Exponentiële functies Hoofsuk - Eponeniële funies lazije 7 V-a hooge in m 7, 8 8, 9 ij in uren 9, Aangezien e punen op een rehe lijn liggen, noemen we eze groei lineair. Als je e rehe lijn naar links voorze, an kun je aflezen

Nadere informatie

Examen VWO. Wiskunde B1 (nieuwe stijl)

Examen VWO. Wiskunde B1 (nieuwe stijl) Wiskunde B (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 83 punen e behalen; he examen besaa ui 20 vragen. Voor

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a Blok - Vaardigheden ladzijde d 9 B B 6 f a a e r 9 9r r r r 8 a De rihingsoëffiiën van de lijn is gelijk aan en he sargeal is dus 7 0 de vergelijking is y x+ De rihingsoëffiiën van de lijn is gelijk

Nadere informatie

Hoofdstuk 1 - Exponentiële formules

Hoofdstuk 1 - Exponentiële formules V-1a 4 Hoofdsuk 1 - Exponeniële formules Hoofdsuk 1 - Exponeniële formules Voorkennis prijs in euro s 70 78,0 percenage 100 119 1,19 b Je moe de prijs me he geal 1,19 vermenigvuldigen. c De BTW op de fies

Nadere informatie

Blok 4 - Vaardigheden

Blok 4 - Vaardigheden Havo B deel Uiwerkingen Moderne wiskunde Blok - Vaardigheden bladzijde a domein en bereik b x = = = c Me behulp van onderdeel b en de grafiek: d Eers: log x = ofwel x = = Dan me behulp van de grafiek:

Nadere informatie

Correctievoorschrift VWO 2015

Correctievoorschrift VWO 2015 Correcievoorschrif VWO 205 ijdvak wiskunde C (pilo) He correcievoorschrif besaa ui: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor

Nadere informatie

Extra oefening hoofdstuk 1

Extra oefening hoofdstuk 1 Era oefening hoofdsuk a Meekundig, u = 76, r = en u 9 = ( ) =, 76 86 Meekundig, u =,, r =, en u =, ( ) = 9 c Rekenkundig, u =, v = en v = + 9 = 8 9 d Meekundig, u =, r = 98, en u = (, 98) =, 87776 e Geen

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correcievoorschrif VWO 009 ijdvak wiskunde A, He correcievoorschrif besaa ui: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek . Omtrekshoeken en middelpuntshoeken Opgave : ACB is constant Opgave : a. * b. * c. ACB AMB Opgave 3: a. * b. de drie cirkels gaan door één punt c. de drie lijnstukken gaan door één punt Opgave 4: a. Teken

Nadere informatie

Antwoordmodel VWO wa II. Speelgoedfabriek

Antwoordmodel VWO wa II. Speelgoedfabriek Anwoordmodel VWO wa 00-II Anwoorden Speelgoedfabriek Voorwaarde II hoor bij immeren Voor immeren zijn 60x + 40y minuen nodig Voor immeren zijn 80 uur dus 4800 minuen beschikbaar 60x + 40y 4800 kom overeen

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de funcie f : R R : 7 cos(2 ). Bepaal de afgeleide van de funcie f in he pun 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D) f 0

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaarigheen a lazije 5 5, 9 B B 6 5 5 f a a e r 9 9r r r r 5 8 5 5 a De rihingsoëffiiën van e lijn is gelijk aan 5 en he sargeal is 5, us 7 0 e vergelijking is y x+ 5. De rihingsoëffiiën van e lijn

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 4 Exra oefening hoofdsuk a Invullen van a en geef B. Dus saa er, op de meer. B +, 8 +, 5 euro. c 5 +, 8a +, 5 5 + 8, a d 8, a 4 a 5 Er is 5 km afgelegd. Chauffeur X leg km in ijvooreeld minuen af. Dan

Nadere informatie

Uitwerkingen H14 Algebraïsche vaardigheden 1a. x = 6 2 = 4 en y = 9,60 5 = 4,60

Uitwerkingen H14 Algebraïsche vaardigheden 1a. x = 6 2 = 4 en y = 9,60 5 = 4,60 Uiwerkingen H Algebraïsche vaardigheden = 6 = en y = 9,60 5 =,60 Voor km een bedrag van,60 euro Per km dus een bedrag van,5 euro. Da is he quoiën van y en. Bij km zijn de kosen 5 euro dus bij 0 km zijn

Nadere informatie

Vaardigheden. bladzijde 174. De toename per jaar is = 102, = dus de toename per 100 jaar is De toename per jaar is.

Vaardigheden. bladzijde 174. De toename per jaar is = 102, = dus de toename per 100 jaar is De toename per jaar is. Vaarigheen lazije 74 00 440 De oename per jaar is = 0, 00 99 ij in jaren 990 000 00 00 00 aanal 440 7,, 00 De oename per jaar is 609900 00 000 700 89 ij in jaren 700 800 900 997 000 aanal 00 00 48 000

Nadere informatie

C. von Schwartzenberg 1/18. 1b Dat zijn de punten (0, 0) en (1; 0,5). Zie de plot hiernaast.

C. von Schwartzenberg 1/18. 1b Dat zijn de punten (0, 0) en (1; 0,5). Zie de plot hiernaast. a G&R havo B deel 9 Allerlei uncies C von Schwarzenber /8 Zie de plo hiernaas b Da zijn de punen (0, 0) en (; 0,5) c Van de raieken van en li een enkel pun onder de -as d De raieken van en hebben de -as

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Ze krijgt 60% korting op het basisbedrag van 1000,- (jaarpremie) en moet dan 400,- (jaarpremie) betalen.

Ze krijgt 60% korting op het basisbedrag van 1000,- (jaarpremie) en moet dan 400,- (jaarpremie) betalen. 1a 1b G&R havo A deel 1 Tabellen en grafieken C. von Schwarzenberg 1/14 Een buspakje kan door de brievenbus, een pakke nie. Een zending die voorrang krijg. 1c 5, 40. (Worldpack Basic prioriy Buien Europa

Nadere informatie

PQS en PRS PS is de bissectrice van ˆP

PQS en PRS PS is de bissectrice van ˆP OEFENINGEN 1 Kleur de figuren die congruent zijn met elkaar in dezelfde kleur. 2 Gegeven: PQS en PRS PS is de bissectrice van ˆP Gevraagd: Zijn de driehoeken congruent? Verklaar. 3 Gegeven: Gevraagd: Is

Nadere informatie

Dus de groeifactor per 20 jaar is 1,5 = 2,25 een toename van 125% in 20 jaar. Dus Gerben heeft geen gelijk.

Dus de groeifactor per 20 jaar is 1,5 = 2,25 een toename van 125% in 20 jaar. Dus Gerben heeft geen gelijk. G&R havo B deel Groei C. von Schwarzenber / a In 980 is N i = 0 + 0 = 800 miljoen. b Vermenivuldien me,. (iedere 0 jaar van 00% naar 0% iedere 0 jaar keer,) c In 980 is N o = = N o = = d 0% oename per

Nadere informatie

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a

7 a Als je onder elkaar zet en vermenigvuldigt: , 12 Lengte schuine zijde is. 13 Bovenlangs: 14 a H7 WORTELS VWO 7.0 INTRO a Zijden grotere vierkant zijn. a Lengte kniplijn is. De oppervlakte van het grote vierkant is = 80, dus de zijden zijn 80. d ;,9 ; 7 ; 7 a Als je onder elkaar zet en vermenigvuldigt:......9..0.00

Nadere informatie

2.4 Oppervlaktemethode

2.4 Oppervlaktemethode 2.4 Opperlakemehode Teken he --diagram an de eenparige beweging me een snelheid an 10 m/s die begin na 2 seconden en eindig na 4 seconden. De afgelegde weg is: =. (m/s) In he --diagram is de hooge an de

Nadere informatie

Snelheid en richting

Snelheid en richting Snelheid en riching Di is een onderdeel van Meekunde me coördinaen en behoeve van he nieuwe programma (05) wiskunde B vwo. Opgaven me di merkeken kun je, zonder de opbouw aan e asen, overslaan. * Bij opgaven

Nadere informatie

Examen VWO. Wiskunde B1,2 (nieuwe stijl)

Examen VWO. Wiskunde B1,2 (nieuwe stijl) Wiskunde B,2 (nieuwe sijl) Examen VW Voorbereidend Weenschappelijk nderwijs Tijdvak Donderdag 22 mei 3.30 6.30 uur 20 03 Voor di examen zijn maximaal 86 punen e behalen; he examen besaa ui 9 vragen. Voor

Nadere informatie

Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d.

Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d. 17 Vermoeden: De drie deellijnen gaan door 1 punt. 33c. Vermoeden: De drie zwaartelijnen gaan door 1 punt. 33d. 18 Vermoeden: De drie hoogtelijnen gaan door 1 punt 34. a. De drie middelloodlijnen van een

Nadere informatie

Krommen in het platte vlak

Krommen in het platte vlak Krommen in he plae vlak 1 Een komee beschrijf een baan om de zon. We brengen een assenselsel aan in he vlak van de baan van de komee, me de zon als oorsprong. Als eenheid in he assenselsel nemen we de

Nadere informatie

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12 Katern 3 Meetkunde Inhoudsopgave 1 Hoeken 2 2 Congruentie en gelijkvormigheid 4 3 Driehoeken 8 4 Vierhoeken 12 5 Lijnen in een driehoek 15 Inleiding De vlakke meetkunde is de meetkunde die zich afspeelt

Nadere informatie

De Cirkel van Apollonius en Isodynamische Punten

De Cirkel van Apollonius en Isodynamische Punten januari 2008 De Cirkel van Apollonius en Isodynamische Punten Inleiding Eén van de bekendste meetkundige plaatsen is de middelloodlijn van een lijnstuk. Deze lijn bestaat uit alle punten die gelijke afstand

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1

de Wageningse Methode Antwoorden H17 PYTHAGORAS VWO 1 Hoofdstuk 17 PYTHAGORAS VWO 17.0 INTRO 1 b C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine zijde van een rechthoekige driehoek met rechthoekszijden van 3 en 4 cm is. Dus alle vier de zijden

Nadere informatie

Oefeningen Elektriciteit I Deel Ia

Oefeningen Elektriciteit I Deel Ia Oefeningen Elekriciei I Deel Ia Di documen beva opgaven die aansluien bij de cursuseks Elekriciei I deel Ia ui he jaarprogramma van de e kandidauur Indusrieel Ingenieur KaHo Sin-Lieven.. De elekrische

Nadere informatie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 4 Goniometrie

De Wageningse Methode 5&6 VWO wiskunde B Uitgebreidere antwoorden Hoofdstuk 4 Goniometrie De Wageningse Mehode & VWO wiskunde B Uigebreidere anwoorden Hoofdsuk Goniomerie Paragraaf Cirkelbewegingen a. De hooge van he wiel is de y-coördinaa van he hoogse pun van de grafiek, dus 80 cm b. De periode

Nadere informatie

Hoofdstuk 4 Kansrekening

Hoofdstuk 4 Kansrekening Hoofdstuk 4 Kansrekening Marnix Van Daele MarnixVanDaele@UGentbe Vakgroep Toegepaste Wiskunde en Informatica Universiteit Gent Kansrekening p 1/29 Gebeurtenissen experiment : gooien met een dobbelsteen

Nadere informatie

2008-I Achtkromme de vragen 9 12

2008-I Achtkromme de vragen 9 12 008-I Achtkrmme de vragen 9 Drie gnimetrische frmules vraf. De verdubbelingsfrmule: sin t = sin t cs t vlgt met t = u uit sin t + sin u = sin t cs u + cs t sin u Pythagras: sin tcs t Lengte parameterkrmme:

Nadere informatie

1 Herhalingsoefeningen december

1 Herhalingsoefeningen december 1 Herhalingsoefeningen december Een lichaam word vericaal omhoog geworpen. Welke van de ondersaande v, diagrammen geef dan he juise verloop van de snelheidscomponen weer? Jan rijd me de fies over een lange

Nadere informatie

Antwoordmodel VWO 2002-II wiskunde A (oude stijl) Speelgoedfabriek

Antwoordmodel VWO 2002-II wiskunde A (oude stijl) Speelgoedfabriek Anwoordmodel VWO 00-II wiskunde A (oude sijl) Anwoorden Speelgoedfabriek Voorwaarde II hoor bij immeren Voor immeren zijn 60x + 40y minuen nodig Voor immeren zijn 80 uur dus 4800 minuen beschikbaar 60x

Nadere informatie

5 ab. 6 a. 22,9 25,95 cm

5 ab. 6 a. 22,9 25,95 cm Hoofdstuk 5 GELIJKVORMIGHEID VWO 5 Vergroten en verkleinen a d 5 a 9 driehoekjes, zie plaatje: a 0,5 :,9, en :, ij 9 inh 7 0,5,57 m ij 7 5 5,9 5,95 m d 6,9 0,7 m 9 e a Die van ij Die van 0 ij 0, die van

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Extra oefening - Basis B- Van ABC is de asis BC = en de hoogte AD =. De oppervlakte van ABC is : = 9. Van KLM is de asis KM = 5 + 9 = en de hoogte NL. B-a KN = 5 NL = KL = 5 + 69 NL = = De oppervlakte

Nadere informatie

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2

6 A: 6 2 2 1 5 1 4 = 26 m 2 B: 6 2 2 1 4 2 4 = 20 m 2 C: 6 2 1 2 Hoofdstuk 17 PYTHAGORAS HAVO 17.1 INTRO 1 b c 6 A: 6 1 5 1 4 = 6 m B: 6 1 4 4 = 0 m C: 6 1 3 3 4 = 18 m D: 0 m E: 6 m 7 a A:, cm B: 5,0 cm C: 3, cm D: 4,1 cm b Voor elke zijde geldt dat het de schuine

Nadere informatie

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking.

C. von Schwartzenberg 1/20. Toets voorkennis EXTRA: 3 Differentiëren op bladzijde 156 aan het einde van deze uitwerking. G&R havo B deel Differentiaalrekening C von Schwartzenberg /0 Toets voorkennis EXTRA: Differentiëren op bladzijde 56 aan het einde van deze uitwerking a f ( ) 5 7 f '( ) 8 5 b g( ) ( 5) 5 g '( ) 6 0 c

Nadere informatie

Hoofdstuk 11: Groei 11.1 Exponenti 0 5le groei Opgave 1: Opgave 2: Opgave 3:

Hoofdstuk 11: Groei 11.1 Exponenti 0 5le groei Opgave 1: Opgave 2: Opgave 3: Hoofdsuk : Groei. Eponeni 0 le groei Opgave : a. 60 7 70 7 800 miljoen b., c. 980: N 7 00 7, 7 900 miljoen o 990: N 7 00 7, 7 0 miljoen o 900 7 00 d. klop nie, per 0 jaar is de oename: 700% 7 % 00 Opgave

Nadere informatie

OPQ OQ PQ p p p 3 p. C. von Schwartzenberg 1/27 A = O = = 1 1 2 = 1 1 1 = = = =. = = 1. ax A( ) 2 8 2 8 6 3 6.

OPQ OQ PQ p p p 3 p. C. von Schwartzenberg 1/27 A = O = = 1 1 2 = 1 1 1 = = = =. = = 1. ax A( ) 2 8 2 8 6 3 6. G&R vwo deel Toepassingen C von Schwarzenberg /7 a PQ y Q f ( O OPQR OP PQ b PQ yq f ( p p p OOPQR OP PQ p p p p c p p (opie maimum ma, (voor p,7 a OQ Q P p en PQ yp f ( p p O OPQ OQ PQ p p p p b d + p

Nadere informatie

1 Inleidende begrippen

1 Inleidende begrippen 1 Inleidende begrippen 1.1 Wanneer is een pun in beweging? Leg di ui aan de hand van een figuur. Rus en beweging (blz. 19) Figuur 1.1 Een pun in beweging 1.2 Wanneer is een pun in rus? Leg di ui aan de

Nadere informatie

C. von Schwartzenberg 1/20. Zie de plot hiernaast. 1b Alle grafiek gaan door O (0,0) en (1;0,5). 1c 1d

C. von Schwartzenberg 1/20. Zie de plot hiernaast. 1b Alle grafiek gaan door O (0,0) en (1;0,5). 1c 1d a G&R vwo A deel 0 Allerlei uncie C. von Schwarzenber /0 Zie de plo hiernaas. b Alle raiek aan door O (0,0) en (;0,). c d De raieken van y = 0, en y = 0, komen nie onder de -as. De raieken van y = 0, en

Nadere informatie

Hoofdstuk 1 - Functies en de rekenmachine

Hoofdstuk 1 - Functies en de rekenmachine Hoofdstuk - Funties en de rekenmahine Voorkennis: Funties ladzijde V-a De formule is T = + 00, d Je moet oplossen + 00, d = dus dan geldt 00, d = en dan is d = : 00, 77 m V-a f( ) = = 0en f( ) = ( ) (

Nadere informatie

Meetkundige Ongelijkheden Groep 2

Meetkundige Ongelijkheden Groep 2 Meetkundige Ongelijkheden Groep Trainingsweek Juni 009 1 Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus

Nadere informatie

Voorwoord. Hoofdstukken:

Voorwoord. Hoofdstukken: Voorwoord Di boek behandel de belangrijkse begrippen en mehoden ui de analyse van 'funcies van één variabele' en de analyische vlakke meekunde als een samenhangend geheel Begrippen en mehoden, waarmee

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Etra oefening - Basis B-a 0 y 9 8 8 9 b y y = + 8 0 6 8 0 6 O 8 c Zie de tekening hierboven. De symmetrieas is de y-as. d De coördinaten van de top zijn (0, ). B-a g = 7 ( a+ ) a + 7 g = 7 a+ 0 b w= 9n(

Nadere informatie

11 Groeiprocessen. bladzijde 151 21 a A = c m 0,67 } m = 40 en A = 136. 136 = c 40 0,67 136 = c

11 Groeiprocessen. bladzijde 151 21 a A = c m 0,67 } m = 40 en A = 136. 136 = c 40 0,67 136 = c Groeiprocessen ladzijde a A = c m 7 } m = 40 en A = = c 40 7 = c, 40 0 7 c, Dus de evenredigheidsconsane is,. m = 7 geef A =, 7 7 Dus de lichaamsoppervlake is ongeveer dm. c A =, geef, m 7 =, m 7 009 m

Nadere informatie

Hoofdstuk 1 - Extra oefening

Hoofdstuk 1 - Extra oefening Hoofdsuk - Ruimefiguren Hoofdsuk - Exra oefening Een mogelijke inselling is da je de x-waarden kies van 0 o 0 en de y-waarden van 000 o 0 000. a He ereik is [ 6,; 0] He ereik word: [-6, 0 ; He ereik word:

Nadere informatie

wiskunde A vwo 2015-I

wiskunde A vwo 2015-I wiskunde A vwo 05-I Diabeesrisicoes maximumscore 4 He aanal personen me verborgen diabees is binomiaal verdeeld me n = 400 en p = 0, 0 P( X 00 ) = P( X 99 ) Beschrijven hoe di me de GR berekend word De

Nadere informatie

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus

CEVA-DRIEHOEKEN. Eindwerk wiskunde 2010. Heilige-Drievuldigheidscollege 6WeWIi. Soetemans Dokus CEVA-DRIEHOEKEN Eindwerk wiskunde 010 Heilige-Drievuldigheidscollege 6WeWIi Soetemans Dokus Inhoud 1. Inleiding... 4 1.1. Info over Giovanni Ceva... 4 1.. Wat zijn Ceva-driehoeken?... 4 1.3. Enkele voorbeelden...

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE A: +6=0 B: C: 8 D: 8.0 INTRO. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve rechthoeken

Nadere informatie

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO

Hoofdstuk 21 OPPERVLAKTE VWO 4 A: = 10 B: 4 C: 8 D: INTRO Hoofdstuk OPPERVLAKTE VWO.0 INTRO A: +6=0 B: C: 8 D: 8. DE OPPERVLAKTE VAN EEN PARALLELLOGRAM 5 a Als voorbeeld de oppervlakte van D: De donkerblauwe rechthoek heeft oppervlakte 5 = 0. Daar gaan twee halve

Nadere informatie

1 Introductie. 2 Oppervlakteformules

1 Introductie. 2 Oppervlakteformules Introductie We werken hier met ongeoriënteerde lengtes en voor het gemak laten we de absoluutstrepen weg. De lengte van een lijnstuk XY wordt dus ook weergegeven met XY. Verder zullen we de volgende notatie

Nadere informatie

Uitgevers. Noordhoff. Hoofdstuk 2 Hoeken en symmetrie. Opstap Hoeken. c /D is een rechte hoek. Zo n driehoek heet een gelijkzijdige driehoek.

Uitgevers. Noordhoff. Hoofdstuk 2 Hoeken en symmetrie. Opstap Hoeken. c /D is een rechte hoek. Zo n driehoek heet een gelijkzijdige driehoek. Hoofdstuk 2 Hoeken en symmetrie Opstap Hoeken O-1a /A en G zijn sherpe hoeken. /F en /J zijn stompe hoeken. /D is een rehte hoek. d /A 42 en /F 131 O-2 v a 30 85 Uitgevers 110 K L M d e f 168 90 180 N

Nadere informatie

Hoofdstuk 7 - Periodieke functies

Hoofdstuk 7 - Periodieke functies Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Voorkennis: Goniometrische verhoudingen ladzijde 9 V-a vereenkomstige hoeken zijn gelijk. 7 7, c PR 7, AC, 7, QR 7, BC, 7, 0 V-a In deze driehoeken is A C en ook zijn de hoeken ij U en V gelijk. CR AQ

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv a 8 Exra oefening ij hoofdsuk In driehoek ADF is de hoek ussen AD en DF een rehe hoek dus geld: an ( AF, AD) FD AD Dus is ( AF, AD) an 8 AP, PF en AF 0 osinusregel: FP AP + AF AP AF os FAP a d a os FAP

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden

4.0 Voorkennis. 1) A B AB met A 0 en B 0 B B. Rekenregels voor wortels: Voorbeeld 1: Voorbeeld 2: Willem-Jan van der Zanden 4.0 Voorkennis Rekenregels voor wortels: 1) A B AB met A 0 en B 0 A A 2) met A 0 en B 0 B B Voorbeeld 1: 2 3 23 6 Voorbeeld 2: 9 9 3 3 3 1 4.0 Voorkennis Voorbeeld 3: 3 3 6 3 6 6 6 6 6 1 2 6 Let op: In

Nadere informatie

Henrik Bastijns en Joachim Nelis 22-4-2014

Henrik Bastijns en Joachim Nelis 22-4-2014 HEILIGE DRIEVULDIGHEIDSCOLLEGE Onderzoeksopdracht Stelling van Ptolemaeus Henrik Bastijns en Joachim Nelis 22-4-2014 Inhoudstafel Historische achtergrond Bewijs van de stelling van Ptolemaeus Toepassingen

Nadere informatie

Extra oefening en Oefentoets Helpdesk

Extra oefening en Oefentoets Helpdesk Etra oefening en Oefentoets Helpdesk Etra oefening ij hoofdstuk a π 9 h 000 geeft h 000 9, cm 8π De hoogte van het lik is s ongeveer,9 cm π r h 000 geeft h 000 000 r 8, r π r π c Als de straal heel klein

Nadere informatie

Correctievoorschrift VWO

Correctievoorschrift VWO Correcievoorschrif VWO 2007 ijdvak 2 wiskunde A,2 He correcievoorschrif besaa ui: Regels voor de beoordeling 2 Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de

Nadere informatie

UNIFORM HEREXAMEN MULO tevens 2 E ZITTING STAATSEXAMEN MULO 2007

UNIFORM HEREXAMEN MULO tevens 2 E ZITTING STAATSEXAMEN MULO 2007 MINISTERIE VAN ONERWIJS EN VOLKSONTWIKKELING EXAMENUREAU UNIFORM HEREXAMEN MULO tevens E ZITTING STAATSEXAMEN MULO 007 VAK : WISKUNE ATUM : TIJ : ----------------------------------------------------------------------------------------------------------------------------------------------

Nadere informatie

C + E = 180 ( AEBC is een koordenvierhoek)

C + E = 180 ( AEBC is een koordenvierhoek) G&R vwo B deel 4 1 Bewijzen in de vlakke meetkunde C von Schwartzenberg 1/16 1 Vermoeden: ACB is constant (in figuur 11 als punt C over de bovenste boog AB loopt) a * 3a * b * 3b Vermoeden: De drie cirkels

Nadere informatie

Correctievoorschrift VWO 2014

Correctievoorschrift VWO 2014 Correcievoorschrif VWO 04 ijdvak wiskunde A (pilo) He correcievoorschrif besaa ui: Regels voor de beoordeling Algemene regels 3 Vakspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde

9 6,5 + 4 is ongeveer 11, dus 7 Vlamingen en 4 Walen. 11 abcde Hoofdstuk GELIJKVORMIGHEID HAVO. INTRO a g Nee, de gezichten zijn even groot, terwijl de lengtes verschillen. h Ja, alle lengtes van de kleine driehoek worden met,4 vermenigvuldigd. Ja, want van Nils driehoek

Nadere informatie

Blok 3 - Vaardigheden

Blok 3 - Vaardigheden Blok - Vaarigheen Moerne wiskune 9e eiie vwo B eel lazije 78 a Elke uur wor een hoeveelhei vermenigvulig me,09 Na uur is er, 09 Na ag = = uur is er (, 09), 09, 09 De groeifaor per ag is, 09, 9 De groeifaor

Nadere informatie

40 = = Kruislings vermenigvuldigen geeft 40( c + 3) = 100 c waaruit volgt dat

40 = = Kruislings vermenigvuldigen geeft 40( c + 3) = 100 c waaruit volgt dat Kern Analyse 00 ( + 0) 00 a = 0 geef S = =. We zoeken de oplossing van de vergelijking S = 85. Oplossen + 0+ 3 + 3 lever = 7. b ijd (uren) 0 3 7 7 57 percenage S 0 50 70 80 90 95 c S 80 60 40 0 O 0 0 30

Nadere informatie

9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a

9 a met: 100 (a+b) ; zonder: 100 a b b 100 (a+b) = 100 a b. 10 a met: 24 (a b) ; zonder: 24 a + b b 24 (a b) = 24 a + b. 11 a 90 a b 90 + a 6.0 INTRO De uitkomsten zijn allemaal. c (n+)(n ) (n +)(n ) = d - - = -0,75 -,75 = De uitkomsten zijn allemaal c n + (n+) (n+) = d + 6 4 4 4 = 6 4 = 6. REKENEN a ( + 5) = 8 = 64 = 8 + 5 = 6 + 5 = ( + 5

Nadere informatie

Wind en water in de Westerschelde. Behorende bij de Bacheloropdracht HS

Wind en water in de Westerschelde. Behorende bij de Bacheloropdracht HS Behorende bij de Bacheloropdrach HS Door: Julia Berkhou Lena Jezuia Sephen Willink Begeleider: Prof.dr. A.A. Soorvogel Daum: 17 juni 2013 Inhoudsopgave 1 Inleiding 2 2 Achergrondinformaie 3 2.1 He geij.................................

Nadere informatie

Hoofdstuk 2 Vlakke meetkunde

Hoofdstuk 2 Vlakke meetkunde Opstap eellijn, hoogtelijn, samen 180 en samen 360 O-1a P 60º R d O-2a O-3a d P x x Q e drie deellijnen van de driehoek gaan inderdaad door één punt. M O Zie opdraht O-2a. U S V T UV is de hoogtelijn op

Nadere informatie

Hoofdstuk 8 - Periodieke functies

Hoofdstuk 8 - Periodieke functies Havo B deel Uitwerkingen Moderne wiskunde Hoofdstuk 8 - Periodieke functies ladzijde 8 V-a c Na seconden = slagen per minuut ca., millivolt V-a Ja, met periode Nee Mogelijk, met periode = en amplitude

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv 72 Voorkennis V-a Driehoek is een rehthoekige driehoek. Driehoek 2 is een gelijkenige driehoek. De oppervlakte van driehoek is 7 3 : 2 5 38,5 m 2. De oppervlakte van driehoek 2 is 8 3 7,5 : 2 5 30 m 2.

Nadere informatie

Blok 1 - Vaardigheden

Blok 1 - Vaardigheden Blok - Vaardigheden Blok - Vaardigheden Etra oefening - Basis B-a h( ) = 000 00 = 00 h( 7 ) = 000 00 7 = 0 h(, ) = 000 00, = 70 000 00t = 00 00t = 00 t = B-a Invullen van geeft f ( ) = + 0 = +, maar de

Nadere informatie

Wiskunde D Online uitwerking 4 VWO blok 7 les 2

Wiskunde D Online uitwerking 4 VWO blok 7 les 2 Wiskunde D Online uitwerking 4 VWO lok 7 les Paragraaf Loodrechte stand en inproduct Opgave De lijnen HM En BD snijden elkaart, want ze liggen eide in het vlak door de punten H, D, B en M Ze snijden elkaar

Nadere informatie

Eindexamen wiskunde A1-2 vwo 2003-I

Eindexamen wiskunde A1-2 vwo 2003-I Eindexamen wiskunde A- vwo 003-I 4 Anwoordmodel Levensduur van kfiezeapparaen Maximumscore 4 Na,5 jaar zijn er 500 0,99 0,97 apparaen Na 3,5 jaar zijn er 500 0,99 0,97 0,87 apparaen He verschil hierussen

Nadere informatie

Hoofdstuk 7 Goniometrie

Hoofdstuk 7 Goniometrie V-1a 4 Voorkennis 5 C A 5 m B C = 10 5 = 9 ABC is geen rehthoekige driehoek. V-2a 76 14 K m L d M = 10 14 76 = 90 L 0 De rehthoeksn zijn de n LM en KM. De langste is KL. d LM = 0 KM = 16 KL = 900 256 +

Nadere informatie

C. von Schwartzenberg 1/8. 1b Bij situatie II is er sprake van een evenredig verband. bij p = 12,50 hoort q = 6500. W is evenredig met S,

C. von Schwartzenberg 1/8. 1b Bij situatie II is er sprake van een evenredig verband. bij p = 12,50 hoort q = 6500. W is evenredig met S, G&R havo A eel C vo Schwarzeberg 1/8 1a Bij I wor y vier keer zo klei (us he viere eel) ; bij II wor y (precies als ) ook vier keer zo groo 1b Bij siuaie II is er sprake va ee evereig verba a (rech)evereig

Nadere informatie

Hoofdstuk 3 - Differentiëren

Hoofdstuk 3 - Differentiëren Hoofdstuk - Differentiëren Moderne wiskunde 9e editie vwo B deel Voorkennis: Mahten en differentiëren ladzijde 7 6 V-a ( ) ( ) 8 f d e ( ) g 5 ( ) 6 6 ( 9 ) 9 ( ) ( ) 6 6 5 5 6 5 6 6 5 5 9 h ( ) 8 ( )

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv Hoofdstuk - Gelijkvormigheid Voorkennis V-1a /A = 74, /B 1 = 18 en /D 1 = 88 /A + /B 1 + /D 1 = 74 + 18 + 88 = 180 c /B = 104, /C = 55 en /D = 1 d /B = /B 1 + /B = 18 + 104 = 1 en /D = /D 1 + /D = 88 +

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Voorkennis: ijzondere figuren ladzijde 30 50 60 = 80 50 60 = 70 d V-a Hoofdstuk 5 - efinities en stellingen Ja, de zwaartelijnen gaan door één punt: het zwaartepunt Ja, de hoogtelijnen gaan door één

Nadere informatie

t Ik bekijk de plaatjes, de titel en de tussenkopjes.

t Ik bekijk de plaatjes, de titel en de tussenkopjes. 2.1 LWB 7A-20 Les: Geen vis INFORMATIE Leeseks Teks 1: informaieve eks over walvissen. Teks 1: oud AVI 9; nieuw AVI M6. Zie ook sofware. Cenrale sraegie/leerdoel Teks inerpreeren: je bedenk de hoofdvraag

Nadere informatie

Hoofdstuk 2 - De kettingregel

Hoofdstuk 2 - De kettingregel Hoofdstuk - De kettingregel ladzijde V-a P ( ) 0 ( 0+ ) 0 0 + 0 0 + 0 60 W + + + a + t voor a 0 a a T u ( r ) r r 8 d R log + V-a u t wordt t en s t u t wordt t en s t 7 V-a A: t ( ) A: t ( ) ( ) 8 8 V-a

Nadere informatie

Het wiskunde B1,2-examen

Het wiskunde B1,2-examen Ger Koole, Alex van den Brandhof He wiskunde B,2 examen NAW 5/4 nr. 2 juni 2003 65 Ger Koole Faculei der Exace Weenschappen, Afdeling Wiskunde, Vrije Universiei, De Boelelaan 08 a, 08 HV Amserdam koole@cs.vu.nl

Nadere informatie