Naam:... Nr... SPRONG 5. a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft.

Maat: px
Weergave met pagina beginnen:

Download "Naam:... Nr... SPRONG 5. a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft."

Transcriptie

1 Naam:... Nr.... SPRONG 5 G G 1 Percenten T a Kleur het juiste percentage van de figuren en vul in hoeveel percent er overblijft. Kleur 20 % blauw. 25 % maak je geel. 50 % krijgt een groene kleur. Er blijft % over. Kleur 30 % blauw. 18 % maak je geel. 45 % krijgt een groene kleur. Er blijft % over. b Teken een lijnstuk dat 175 % is van dit lijnstuk. 2 Reken het percentage uit. Noteer de tussenuitkomsten. 54 % van 100 = = 30 % van 500 = = 15 % van 30 = = 12,5 % van 400 = = 250 % van 50 = = 125 % van = = 3 Vul de tabel aan. Zet om in een breuk, percent of kommagetal. 1 5 %, 75 %, % 0,09 87,5 %, % 1,20 43

2 SPRONG 5 4 Los de problemen op. Denk aan je stappenplan! a Het verplegend personeel krijgt een loonsverhoging van 3 %. Hanna is verpleegster en verdient nu euro netto. Hoeveel zal haar nettoloon na de verhoging bedragen? Berekening: Antwoord: b In een groothandelszaak koopt een restauranthouder voor 450 euro voedingswaren. Aan de kassa komt daar 6 % btw bij. Hij betaalt met zijn bankkaart. Hoeveel gaat er van zijn rekening? Berekening: Antwoord: c Oom Jaak heeft vorig jaar euro in aandelen belegd. Intussen is hun koers met 15 % gestegen. Hoeveel winst maakt hij als hij zijn aandelen nu verkoopt? Berekening: Antwoord: B 1 Reken uit en noteer je tussenuitkomsten : = = 56 : = = : = = 760 : = = : 50 = = 450 : 500 = = : 25 = = 200 : = = 2 Vul een getal of een bewerkingsteken in zodat de uitkomsten gelijk zijn : 25 = : : 50 = : 500 = ( ) Zie je het verband? Voor en na = moet je evenveel hebben. 1,5 x 0,99 = 0, ,5 x 1,6 = 100 x

3 Naam:... Nr.... SPRONG 5 3 Reken uit en noteer je tussenuitkomsten. 127,5 x 0,01 = = 0,7 x 0,9 = = 0,4 x 0,125 = = 8,6 x 0,25 = = 1,5 x 0,64 = = 1,1 x 7,7 = = 2,5 x 16,4 = = 0,9 x 18,9 = = 4 Reken zorgvuldig uit. Vergeet het stappenplan niet toe te passen. a Hoeveel is 48 maal 27,48? b Jaarlijks fietst Jan Velo km van en naar het werk. Bij zijn werkgever heeft hij recht op een fietsvergoeding van 0,18 euro per kilometer. Hoeveel krijgt Jan per jaar? Controle: Controle: 45

4 SPRONG 5 MMR 1 Op de kinderboerderij Hieronder zie je de plannen voor een nieuwe kinderboerderij. Alle dieren krijgen een eigen afgebakend terrein. Hoeveel meter draad moet er geplaatst worden? Vanaf hier mag je je ZRM gebruiken. 1 cm = 1 m dieren werkwijze aantal meters draad runderen... paarden... geiten... pluimvee... totaal aantal meters draad 2 Voldoende ruimte? Bereken de oppervlakte van de dierenverblijven en vergelijk die met de Europese norm. Omkring de dieren die te weinig ruimte hebben. dieren werkwijze oppervlakte m 2 /dier 2 runderen... 4,5 2 paarden geiten.. 2,5 5 stuks pluimvee

5 Naam:... Nr.... SPRONG 5 MK 1 Noteer de kenmerken van deze driehoeken. Kijk naar de zijden en de hoeken. 2 Lees de omschrijving aandachtig en teken de juiste vierhoek. omschrijving schets tekening Figuur OPQR is een vierhoek waarvan de diagonalen elkaar niet loodrecht snijden. Ô = ˆP = ˆQ [OQ] = [PR] = 5 cm Deze figuur is een Figuur EFGH is een vierhoek met twee paar evenwijdige zijden. Ê = Ĝ en ˆF = Ĥ Ê = 80 Dit zijn de zijden: Deze figuur is een 47

6 SPRONG 5 3 Waar of niet waar? Zet een kruisje in de juiste kolom. Toon aan met een schets. a b c d e Een figuur met twee diagonalen is altijd een vierhoek. In een ruit kunnen de diagonalen even lang zijn. Een vierhoek met één rechte hoek en twee paar evenwijdige zijden is altijd een rechthoek. Als de overstaande hoeken en de overstaande zijden gelijk zijn, is de vierhoek een ruit. Als de diagonalen van een vierhoek even lang zijn en de hoeken even groot, is het een rechthoek. W N W Schetsen: a b c d e 48

7 Naam:... Nr.... SPRONG 5 1 Teken de diagonalen in de veelhoeken. 2 Noteer hoeveel hoeken elke veelhoek uit oefening 1 heeft en hoeveel diagonalen je erin kunt tekenen. veelhoek aantal hoeken aantal diagonalen 3 Hoeveel diagonalen kun je tekenen in een twintighoek? Ik denk diagonalen omdat STAP 1: Bekijk eerst de veelhoeken uit oefening 1 goed. Kies een hoekpunt in een veelhoek en beantwoord de vragen. a Naar welke hoekpunten kun je geen diagonalen tekenen? b Naar hoeveel hoekpunten kun je geen diagonalen tekenen vanuit dat gekozen hoekpunt? 49

8 SPRONG 5 c Hoeveel diagonalen kun je tekenen vanuit één hoekpunt? veelhoek aantal hoeken aantal diagonalen vanuit één hoekpunt driehoek vierhoek vijfhoek zeshoek zevenhoek achthoek d Zoek aan de hand van de tabel een formule die je op alle veelhoeken kunt toepassen om het aantal diagonalen te vinden die je vanuit één hoekpunt kunt tekenen. STAP 2: Bekijk nu de tabel die je in oefening 2 hebt ingevuld en de vaststellingen uit stap 1. Breng ze samen in de onderstaande tabel. veelhoek aantal hoeken aantal diagonalen vanuit één hoekpunt aantal diagonalen driehoek vierhoek vijfhoek zeshoek zevenhoek achthoek a Kun je nu een formule bedenken om te berekenen hoeveel diagonalen een veelhoek heeft? Formule: Controleer of je formule klopt voor alle veelhoeken in de bovenstaande tabel. b Hoeveel diagonalen kun je dan tekenen in een twintighoek? Formule: Antwoord: Je kunt het controleren door de diagonalen te tekenen in de twintighoek op de volgende bladzijde. 50

9 Naam:... Nr.... SPRONG 5 c Bereken het aantal diagonalen voor de onderstaande veelhoeken. veelhoek werkwijze aantal diagonalen twaalfhoek.. zestighoek.. honderdhoek.. duizendhoek.. Knutseltip: Leg deze tekening op een beschilderde plank. Klop op de hoekpunten koperen spijkertjes van 2 cm in de plank. Verbind de spijkertjes met garen in verschillende kleuren. Je krijgt dan een prachtig wiskundig kunstwerkje op basis van diagonalen. 51

10 SPRONG 5 4 Diagonalen in percenten Haal het aantal diagonalen uit de tabellen van de vorige oefeningen. Bereken hoeveel percent het aantal diagonalen van het aantal hoeken is. aantal hoekpunten aantal diagonalen percentage diagonalen / hoekpunten a Wat stel je vast? 3 % 4 % 5 % 6 % 7 % 8 % 12 % 60 % 100 % % b Bereken het aantal diagonalen in de volgende veelhoeken volgens de percentmethode. veelhoek werkwijze percentmethode aantal diagonalen negenhoek.. tienhoek.. twaalfhoek.. twintighoek.. Controleer je resultaat met de eerder gevonden formule. veelhoek werkwijze aantal diagonalen negenhoek.. tienhoek.. twaalfhoek.. twintighoek.. c Welke werkwijze verkies je? Leg uit waarom. 52

oefenbundeltje voor het vijfde leerjaar

oefenbundeltje voor het vijfde leerjaar oefenbundeltje voor het vijfde leerjaar bevat: werkbladen uit de map van Wibbel bij Rekensprong Plus, aansluitend bij de wiskundeopdrachten op de poster; de correctiesleutel bij deze werkbladen. Meer informatie

Nadere informatie

Wiskunde Opdrachten Vlakke figuren

Wiskunde Opdrachten Vlakke figuren Wiskunde Opdrachten Vlakke figuren Opdracht 1. Teken in de figuren hieronder alle symmetrieassen. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14. 15. 16. 17. 18. 19. 20. 21. 22. 23. 24. Opdracht 2. A. Welke

Nadere informatie

Naam:... Nr... SPRONG 6

Naam:... Nr... SPRONG 6 Naam:... Nr.... SPRONG 6 G 1 Percenten a Bereken het percent. Schrijf de tussenuitkomsten op. 5 % van 500 = van 500 = x = 15 % van 200 = van 200 = x = 4 % van 2 000 = van 2 000 = x = 10 % van 700 = van

Nadere informatie

2 Noteer de letter die de plaats aanduidt van het getal op de getallenas. nr. 8

2 Noteer de letter die de plaats aanduidt van het getal op de getallenas. nr. 8 Toetswijzer extra Naam : Klasnr: Getallenkennis 1 Noteer de getallen met cijfers nrs 6,7,19,en 20 5,9 miljoen vierhonderd en tien duizendste 2 Noteer de letter die de plaats aanduidt van het getal op de

Nadere informatie

oefenbundel voor het zesde leerjaar

oefenbundel voor het zesde leerjaar oefbundel voor het zesde leerjaar leerinhoud aard bron deelbaarheid door 3 9 kommagetall vermigvuldig vermigvuldig del met natuurlijke getall kommagetall oppervlakte berek oppervlakte / vlakke figur omstructurer

Nadere informatie

Naam:... Nr... SPRONG 6. Op elke tekening zie je twee van elkaar gescheiden grootheden. Vul telkens de tekst aan. kaarsen zijn smal.

Naam:... Nr... SPRONG 6. Op elke tekening zie je twee van elkaar gescheiden grootheden. Vul telkens de tekst aan. kaarsen zijn smal. Naam:.. Nr.. SPRONG 6 G G 1 Verhoudingen T Op elke tekening zie je twee van elkaar gescheiden grootheden. Vul telkens de tekst aan. Deze stoelen verhouden zich als Deze kaarsen verhouden zich als Deze

Nadere informatie

---9. r-:- ------------------ I Getallenkenni:li. Tips voor de toets. Meetkunde. Bewerldngen. Meten en metend rekenen

---9. r-:- ------------------ I Getallenkenni:li. Tips voor de toets. Meetkunde. Bewerldngen. Meten en metend rekenen 5 r-:- ------------------ Getallenkenni:li Wat leerde ik? Een verhouding uitdrukken in percent en i omgekeerd Breuken vermenigvuldigen met een natuurlijk getal en omgekeerd Waar staat dit in het onthoudboek?

Nadere informatie

Naam:... Nr... SPRONG 7

Naam:... Nr... SPRONG 7 Naam:... Nr.... SPRONG 7 G Vul de verhoudingstabel aan. Tijdens de winterperiode worden de karretjes van de roetsjbaan geschilderd. Voor karretje is /5 liter rode verf, 3/5 liter zwarte verf en /2 liter

Nadere informatie

Wiskunde Leerjaar 2 - Periode 1 Meetkunde

Wiskunde Leerjaar 2 - Periode 1 Meetkunde Wiskunde Leerjaar 2 - Periode 1 Meetkunde Vierhoeken Vierkant Rechthoek Parallellogram Ruit Trapezium Vlieger Vierhoek 1. Vierkant D zijde zijde Een vierkant is een vierhoek met vier rechte hoeken én vier

Nadere informatie

ZESDE KLAS MEETKUNDE

ZESDE KLAS MEETKUNDE ZESDE KLAS MEETKUNDE maandag 1. Het vierkant. Eigenschappen. 2. Vierkanten tekenen met passer en lat vanuit zeshoek 3. Vierkanten tekenen met passer en lat binnen cirkel 4. Vierkanten tekenen met passer

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

Hoofdstuk 2 : VLAKKE FIGUREN

Hoofdstuk 2 : VLAKKE FIGUREN 1 / 6 H2 Vlakke figuren Hoofdstuk 2 : VLAKKE FIGUREN 1. Wat moet ik leren? (handboek p. 46-74) 2.1 Herkennen van vlakke figuren In verband met een veelhoek: a) een veelhoek op de juiste wijze benoemen.

Nadere informatie

Onthoudboekje rekenen

Onthoudboekje rekenen Onthoudboekje rekenen Inhoud 1. Hoofdrekenen: natuurlijke getallen tot 100 000 Optellen (p. 4) Aftrekken (p. 4) Vermenigvuldigen (p. 5) Delen (p. 5) Deling met rest (p. 6) 2. Hoofdrekenen: kommagetallen

Nadere informatie

Ruimtelijke oriëntatie: plaats en richting

Ruimtelijke oriëntatie: plaats en richting Ruimtelijke oriëntatie: plaats en richting 1 Lijnen en rechten Hoe kunnen lijnen zijn? gebogen of krom gebroken recht We onthouden: Een rechte is een rechte lijn. c a b Een rechte heeft geen begin- en

Nadere informatie

oefenbundel voor het vierde leerjaar

oefenbundel voor het vierde leerjaar oefenbundel voor het vierde leerjaar leerinhoud aard bron gelijkwaardige breuken breuken gelijkwaardig maken, vergelijken, ordenen cijferen: optellen en aftrekken tijdsduur (digitale klok) vierkant, rechthoek,

Nadere informatie

Hoofdstuk 3: De stelling van Pythagoras

Hoofdstuk 3: De stelling van Pythagoras Hoofdstuk 3: De stelling van Pythagoras Benamingen afspraken ( boek pag 53) - 49 We spreken van een rechthoekige driehoek als... We zeggen dat in de rechthoekige ABC de grootte van de hoek A 90 o is We

Nadere informatie

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78 ICT Meetkunde met GeoGebra 2.7 deel 1 blz 78 Om de opdrachten van paragraaf 2.7 uit het leerboek te kunnen maken heb je het computerprogramma GeoGebra nodig. Je kunt het programma openen via de leerlingenkit

Nadere informatie

Hoofdstuk 4: Meetkunde

Hoofdstuk 4: Meetkunde Hoofdstuk 4: Meetkunde Wiskunde VMBO 2011/2012 www.lyceo.nl Hoofdstuk 4: Meetkunde Wiskunde 1. Basisvaardigheden 2. Grafieken en formules 3. Algebraïsche verbanden 4. Meetkunde Getallen Assenstelsel Lineair

Nadere informatie

Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen. Instap. Een opgave uit de oefentoets:

Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen. Instap. Een opgave uit de oefentoets: Gecijferdheid periode D Bijeenkomst 2 Hand-out: Meetkundige begrippen en vormen Instap Een opgave uit de oefentoets: Van welke verpakkingen is de vorm een prisma? A. Pak spaghetti blikje chocomel doosje

Nadere informatie

1 Coördinaten in het vlak

1 Coördinaten in het vlak Coördinaten in het vlak Verkennen Meetkunde Coördinaten in het vlak Inleiding Verkennen Beantwoord de vragen bij Verkennen. (Als je er niet uitkomt, ga je gewoon naar de Uitleg, maar bekijk het probleem

Nadere informatie

Extra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde. Transformaties en Stelling van Thales.

Extra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde. Transformaties en Stelling van Thales. Etra oefeningen wiskunde 3lawe 3wet Transformaties, Stelling van Thales, Homothetie. Meetkunde Transformaties en Stelling van Thales.. Waar of niet waar? a. Het beeld van een rechte door de projectie op

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

Junior Wiskunde Olympiade : eerste ronde

Junior Wiskunde Olympiade : eerste ronde Junior Wiskunde lympiade 200-20: eerste ronde. Waaraan is xyz + xyz + xyz gelijk? () 3xyz () 27xyz () x 3 y 3 z 3 () 3x 3 y 3 z 3 () 27x 3 y 3 z 3 2. Welke van volgende ongelijkheden is waar? () 2 > 0,5

Nadere informatie

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom

handleiding pagina s 1005 tot 1015 1 Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 122, 147, 150 en 156 5 Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 1005 tot 1015 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 812: gelijkvormig / vervormen pagina 813: patronen pagina 814: kubus pagina

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs

rekentrainer jaargroep 7 Fietsen op Terschelling. Teken en vul in. Zwijsen naam: reken-wiskundemethode voor het basisonderwijs Zwijsen jaargroep 7 naam: reken-wiskundemethode voor het basisonderwijs Waar staat deze paddenstoel ongeveer? Teken op de kaart. Welke afstand of welke route fietsen de kinderen? naam route afstand Janna

Nadere informatie

Naam:... Datum:... 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =.

Naam:... Datum:... 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =. Opvraging Wiskunde W1 36 + 12 =. 2 x 15 =. 47 + 43 =. 4 x 12 =. 25 + 11 =. 6 x 7 =. 38-16 =. 100 : 4 =. 17-6 =. 36 : 6 =. 2 Goed lezen en oplossen. Ik koop in de supermarkt een krant (80 cent), een brood

Nadere informatie

handleiding pagina s 965 tot Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 117, 123, 129, 140 en Cd-rom

handleiding pagina s 965 tot Handleiding 1.2 Huistaken nihil 2 Werkboek 3 Posters 4 Scheurblokken bladzijden 117, 123, 129, 140 en Cd-rom week 32 les 2 toets en foutenanalyse handleiding pagina s 95 tot 974 nuttige informatie 1 Handleiding 1.1 Kopieerbladen pagina 444: tangram pagina 754: puzzel geometrische figuren pagina 837: diverse gezichtspunten

Nadere informatie

Dag van de wiskunde. Ideeën voor de klaspraktijk. Kortrijk 26 november Spreker: E. Jennekens

Dag van de wiskunde. Ideeën voor de klaspraktijk. Kortrijk 26 november Spreker: E. Jennekens Dag van de wiskunde Kortrijk 26 november 2009 Ideeën voor de klaspraktijk Spreker: E. Jennekens 1. De provincie West-Vlaanderen is 3144 km² groot. Kun je de hele wereldbevolking, 6,7 miljard, verwelkomen

Nadere informatie

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN

MEETKUNDE 120 PUNTEN, LIJNEN EN VLAKKEN 120 PUNTEN, LIJNEN EN VLAKKEN een rechte lijn A het punt A a de rechte a een kromme lijn of een kromme een gebroken lijn a A b a B het lijnstuk [AB] evenwijdige rechten a // b een plat oppervlak of een

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

I. Meetkunde in de basisschool. Vernieuwde inzichten.

I. Meetkunde in de basisschool. Vernieuwde inzichten. m r VLAKKE FIGUREN Inhoud: I. Meetkunde in de basisschool. Vernieuwde inzichten. 1. Vroeger 2. Tegenwoordig 3. Bedenking II. Meetkunde in de (eerste) en tweede graad. III. Hoe werken met de figurenset

Nadere informatie

DE basis WISKUNDE VOOR DE LAGERE SCHOOL

DE basis WISKUNDE VOOR DE LAGERE SCHOOL Inhoud GETALLENKENNIS 13 1 Getallen 13 2 Het decimale talstelsel 14 3 Breuken 16 Begrippen 16 Soorten breuken 16 Een breuk vereenvoudigen 17 4 Breuken, percenten, kommagetallen 18 Breuk omzetten in een

Nadere informatie

handleiding pagina s 687 tot Handleiding 1.1 Kopieerbladen pagina 444: tangram 2 Werkboek 3 Posters

handleiding pagina s 687 tot Handleiding 1.1 Kopieerbladen pagina 444: tangram 2 Werkboek 3 Posters week 22 les 4 toets en foutenanalyse handleiding pagina s 687 tot 695 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 444: tangram 12 Huistaken huistaak 14: bladzijde 445 (vierhoeken tekenen)

Nadere informatie

2.5 Regelmatige veelhoeken

2.5 Regelmatige veelhoeken Regelmatige veelhoeken 81 2.5 Regelmatige veelhoeken Een regelmatige veelhoek is een figuur met zijden die allemaal even lang en hoekendieallemaalevengrootzijn. Wezijneraleenpaartegengekomen: de regelmatige

Nadere informatie

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen.

Deze stelling zegt dat je iedere rechthoekige driehoek kunt maken door drie vierkanten met de hoeken tegen elkaar aan te leggen. Meetkunde Inleiding We beginnen met het doorlezen van alle theorie uit hoofdstuk 3 van het boek. Daar staan een aantal algemene regels goed uitgelegd. Waar je nog wat extra uitleg over nodig hebt, is de

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

Opgaven Kangoeroe vrijdag 17 maart 2000

Opgaven Kangoeroe vrijdag 17 maart 2000 Opgaven Kangoeroe vrijdag 17 maart 2000 VBO en MAVO Klas 3 en 4 Vragen 1 t/m 10: voor elk goed antwoord +3 punten, voor elk fout antwoord -¾ punt. 1. Hiernaast zie je drie aanzichten (voor, boven, links)

Nadere informatie

Niveauproef wiskunde voor AAV

Niveauproef wiskunde voor AAV Niveauproef wiskunde voor AAV Waarom? Voor wiskunde zijn er in AAV 3 modules: je legt een niveauproef af, zodat je op het juiste niveau kan starten. Er is de basismodule voor wie de rekenvaardigheden moet

Nadere informatie

1. A De derde donderdag is veertien dagen na de eerste., dus de derde donderdag is op zijn vroegst op 15 maart.

1. A De derde donderdag is veertien dagen na de eerste., dus de derde donderdag is op zijn vroegst op 15 maart. Uitwerkingen wizprof 2014 1. A De derde donderdag is veertien dagen na de eerste., dus de derde donderdag is op zijn vroegst op 15 maart. 2. A 75 km = 75000 m;. 3. C 2013, 2012, 2011 en 2010 hebben de

Nadere informatie

44 De stelling van Pythagoras

44 De stelling van Pythagoras 44 De stelling van Pythagoras Verkennen Pythagoras Uitleg Je kunt nu lezen wat de stelling van Pythagoras is. In de applet kun je de twee rode punten verschuiven. Opgave 1 a) Verschuif in de applet punt

Nadere informatie

Hoe groot is de kans?

Hoe groot is de kans? Hoe groot is de kans? 1 Met een witte en een grijze dobbelsteen gooien en het product maken Wat denk jij spontaan? Noteer je antwoord in de denkballon Welke producten zijn er allemaal mogelijk als je met

Nadere informatie

VOORBEREIDINGSWEEK BASISOPDRACHTEN

VOORBEREIDINGSWEEK BASISOPDRACHTEN DEEL I VOORBEREIDINGSWEEK BASISOPDRACHTEN In deze week werk je aan een grote serie opdrachten die gereedschap zullen zijn voor de rest van de periode. Je moet zelf je eigen uitwerking maken in een soort

Nadere informatie

JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10

JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10 JAARPLANNING ZO GEZEGD, ZO GEREKEND - 5 leerjaar pag. 1 / 10 Op basis van 5 wiskundelessen per week Week 44: herfstvakantie Week 52 en 1: Kerstvakantie Week 10: krokusverlof Week 15 en 16: Paasvakantie

Nadere informatie

3.1 Soorten hoeken [1]

3.1 Soorten hoeken [1] 3.1 Soorten hoeken [1] Let op: Een lijn heeft geen eindpunt; Een halve lijn heeft één eindpunt Een lijnstuk heeft twee eindpunten; Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de

Nadere informatie

Hoofdstuk 1. De cirkel. 1.1 Middellijn, koorde en apothema. 1.2 Middelpuntshoek en omtrekshoek

Hoofdstuk 1. De cirkel. 1.1 Middellijn, koorde en apothema. 1.2 Middelpuntshoek en omtrekshoek e irkel. iddellijn, koorde en apothema. iddelpuntshoek en omtrekshoek.3 Raaklijn aan een irkel.3. Raaklijn in een punt van een irkel.3. Raaklijnen uit een punt aan een irkel.4 Onderlinge ligging van twee

Nadere informatie

aantal evaluatielessen

aantal evaluatielessen Jaarplanning Rekensprong Plus Rekensprong Plus heeft voor elk leerjaar een eenduidig jaarwerkplan. Elk werkschriftje van Rekensprong Plus overspant een periode tussen twee schoolvakanties werkschrift a

Nadere informatie

5.1 Lineaire formules [1]

5.1 Lineaire formules [1] 5.1 Lineaire formules [1] Voorbeeld : Teken de grafiek van y = 1½x - 3 Stap 1: Maak een tabel met twee coördinaten van deze lijn: x 0 2 y -3 0 Stap 2: Teken de twee punten en de grafiek: 1 5.1 Lineaire

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2008-2009: eerste ronde 1 Hoeveel is 2 5 7? (A) 10 21 (B) 25 7 (C) 7 10 (D) 1 15 (E) 29 21 2 Welke van volgende sommen is gelijk aan 10? (A), + 5,555 (B) 2,222 + 6,666 (C),

Nadere informatie

handleiding pagina s 964 tot Handleiding 1.1 Kopieerbladen pagina 915: km Huistaken huistaak 27: bladzijde Werkboek 3 Posters

handleiding pagina s 964 tot Handleiding 1.1 Kopieerbladen pagina 915: km Huistaken huistaak 27: bladzijde Werkboek 3 Posters week 32 les 1 / OVSG toets en foutenanalyse handleiding pagina s 964 tot 981 nuttige informatie 1 Handleiding 1.1 Kopieerbladen pagina 722: inhoud en lengte pagina 723: gewicht en geldwaarden pagina 724:

Nadere informatie

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde

11 Junior Wiskunde Olympiade 2001-2002: tweede ronde Junior Wiskunde Olympiade 200-2002: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

gemeenschappelijke delers: g.g.d.: Noteer de delers in het schema. Omcirkel de gemeenschappelijke delers. Kleur de g.g.d. blauw.

gemeenschappelijke delers: g.g.d.: Noteer de delers in het schema. Omcirkel de gemeenschappelijke delers. Kleur de g.g.d. blauw. Gel::aUenkennis Noteer de delers in een T-vorm. Noteer de gemeenschappelijke delers en duid de grootste gemeenschappelijke deler aan. a van 12 en 24 b van 10 en 15 24 10 15 Onthoud boek ms. 26 en 27 gemeenschappelijke

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Gelijke oppervlakten De parabool met vergelijking y = 4x x2 en de x-as sluiten een vlakdeel V in. De lijn y = ax (met 0 a < 4) snijdt de parabool in de oorsprong O en in punt. Zie. y 4 3 2 1-1 O 1 2 3

Nadere informatie

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5

Opgave 1 Bestudeer de Uitleg, pagina 1. Laat zien dat ook voor punten buiten lijnstuk AB maar wel op lijn AB geldt: x + 3y = 5 2 Vergelijkingen Verkennen Meetkunde Vergelijkingen Inleiding Verkennen Beantwoord de vragen bij Verkennen. Uitleg Meetkunde Vergelijkingen Uitleg Opgave Bestudeer de Uitleg, pagina. Laat zien dat ook

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: goniometrie en meetkunde. 22 juli 2015. dr. Brenda Casteleyn Voorbereiding toelatingsexamen arts/tandarts Wiskunde: goniometrie en meetkunde 22 juli 2015 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne (http://www.natuurdigitaal.be/geneeskunde/fysica/wiskunde/wiskunde.htm),

Nadere informatie

Hoofdstuk 7 : Gelijkvormige figuren

Hoofdstuk 7 : Gelijkvormige figuren Hoofdstuk 7 : Gelijkvormige figuren 141 Eventjes herhalen : Wat is een homothetie? h (o,k) : Een homothetie met centrum o en factor k Het beeld van een punt Z door de homothetie met centrum O en factor

Nadere informatie

INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel.

INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel. Hoofdstuk 5 Het Assenstelsel 5.1 Het Assenstelsel INDITHOOFDSTUKgaan jullie kennismaken met het cartesisch assenstelsel. Dit assenstelsel is een idee van de Franse filosoof en wiskundige René Descartes(1596-1650).

Nadere informatie

- 3 2. Klas: Naam: Hoofdrekenen

- 3 2. Klas: Naam: Hoofdrekenen INTERDIOCESANE PROEVEN JUNI 2014 Deel 1: WISKUNDE Duid eerst je antwoord aan in deze vragenbundel, daarna op het antwoordblad. Je mag onderstrepen, tekenen, schrijven in je vragenbundel en op je kladblad.

Nadere informatie

Willem-Jan van der Zanden

Willem-Jan van der Zanden Enkele praktische zaken: Altijd meenemen een schrift met ruitjespapier (1 cm of 0,5 cm) of losse blaadjes in een map. Bij voorkeur een groot schrift (A4); Geodriehoek: Deze kun je kopen in de winkel. Koop

Nadere informatie

Voorbeeld paasexamen wiskunde (oefeningen)

Voorbeeld paasexamen wiskunde (oefeningen) Voorbeeld paasexamen wiskunde (oefeningen) Beschouw de 4 termen: x y, x, 6, 9x Voor welke waarden van x en y vormen deze termen een rekenkundige rij? x 9x x, 6, 9 x : RR 6 0x x 0,9 0,9 y ;,9 ; 6 ; 8,,

Nadere informatie

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO

Hoofdstuk 1 KENNISMAKEN 1.0 INTRO Hoofdstuk 1 KENNISMAKEN c 1.0 INTRO 1 a Door een kael te spannen en daar langs te rijden. Met een kael van de juiste lengte die je evestigt aan een punt in de grond (het middelpunt) c Met twee latten die

Nadere informatie

1. rechthoek. 2. vierkant. 3. driehoek.

1. rechthoek. 2. vierkant. 3. driehoek. Bij het uitrekenen van een lengte, een oppervlakte of een inhoud moet je altijd het volgende opschrijven: de formule - de tussenstap - het antwoord - de eenheid. 1. rechthoek. Kenmerken: alle hoeken zijn

Nadere informatie

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want

RECHTEN. 1. Vul in met of. co(a) = (-2,3) a y = -2x + 1 A a want 3-2.(-2)+3 co(a) = (4,1) a 3x -5y -2 = 0 A a want ANALYTISCHE MEETKUNDE: HERHALING DERDE JAAR OEFENINGEN Lees eerst de formules op het andere blad, en los vervolgens de oefeningen van het bijbehorende deel op. Wanneer je alles hebt opgelost, maak je de

Nadere informatie

2015 Voorronde Vragenbundel voor het 5 leerjaar

2015 Voorronde Vragenbundel voor het 5 leerjaar Wiskundequiz editie 8 2015 Voorronde Vragenbundel voor de het 5 leerjaar 01. Welke van de volgende rekensommen geeft de grootste uitkomst? (A) 2 x 0 x 1 x 4 (B) 2 + 0 + 1 + 4 (C) 20 x 1 x 4 (D) (2 + 0)

Nadere informatie

5 5d o e l e n k a t e r n

5 5d o e l e n k a t e r n Blok Pagina Blok 1 2 tot 10 Blok 2 11 tot 21 Blok 3 22 tot 32 Blok 4 33 tot 40 Blok 5 41 tot 50 Blok 6 51 tot 60 Blok 7 61 tot 68 leerjaar 5 5d o e l e n k a t e r n Voorafgaande toelichting bij doelenkatern,

Nadere informatie

handleiding pagina s 198 tot 206 1 Handleiding

handleiding pagina s 198 tot 206 1 Handleiding week 7 les 3 toets en foutenanalyse handleiding pagina s 198 tot 206 nuttige informatie 1 Handleiding 11 Kopieerbladen pagina 23: meetcircuit lengte pagina 83: folder inhoud en gewicht pagina 140: temperatuurcurve

Nadere informatie

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Wat betekenen de getallen? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter. 70 blok 5 les 23 C 1 Wat betekenen de getallen? Samen bespreken. 10 20 30 40 50 60 70 80 90 100 60 981 540 C 2 Welke maten horen erbij? Samen bespreken. Kies uit kilometer, meter, decimeter of centimeter.

Nadere informatie

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar

TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar TVE TIEN VRAGEN EXTENSIE LVS - VCLB WISKUNDE Midden 1ste leerjaar INSTRUCTIE BIJ VRAGEN Wiskunde Midden 1 ste leerjaar Vraag 1: (pg 64 oefening 2 - Basisboek LVS wiskunde toetsen 2) Het verschil tussen

Nadere informatie

i TiPDenk aan de rechthoeksstrategie!

i TiPDenk aan de rechthoeksstrategie! .------------ GetaUenkennis Wat leerde ik? Getallen tot een miljard Kommagetallen tot een duizendste - getallen interpreteren Verhoudingen binnen een context Breuken delen door een natuurlijk getal (De

Nadere informatie

Vlaamse Wiskunde Olympiade : eerste ronde

Vlaamse Wiskunde Olympiade : eerste ronde Vlaamse Wiskunde Olympiade 00-0: eerste ronde. e uitdrukking a b 4 is gelijk aan () ab () ab () ab 6 () ab 8 (E) ab 6. e uitdrukking (a b) is gelijk aan () a b () (b a) () a + b ab () a + b + ab (E) (a

Nadere informatie

doelenkatern leerjaar Blok Pagina Blok 1 2 tot 11 Blok 2 12 tot 20 Blok 3 21 tot 29 Blok 4 30 tot 37 Blok 5 38 tot 44 Blok 6 45 tot 53

doelenkatern leerjaar Blok Pagina Blok 1 2 tot 11 Blok 2 12 tot 20 Blok 3 21 tot 29 Blok 4 30 tot 37 Blok 5 38 tot 44 Blok 6 45 tot 53 Blok Pagina Blok 1 2 tot 11 Blok 2 12 tot 20 Blok 3 21 tot 29 Blok 4 30 tot 37 Blok 5 38 tot 44 Blok 6 45 tot 53 Blok 7 54 tot 62 leerjaar 3 doelenkatern Voorafgaande toelichting bij doelenkatern, leerjaar

Nadere informatie

Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur

Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Examen VMBO-GL en TL 2008 wiskunde CSE GL en TL tijdvak 1 donderdag 22 mei 13.30-15.30 uur Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

handleiding passen en meten

handleiding passen en meten handleiding passen en meten inhoudsopgave inhoudsopgave 2 de grote lijn 3 bespreking per paragraaf 4 Applets 4 1 Vierhoeken 4 2 Met passer en geodriehoek 5 3 Tegelvloertjes 5 4 Onderzoek 5 tijdpad 6 materialen

Nadere informatie

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort

PTA wiskunde BBL Kijkduin, Statenkwartier, Waldeck cohort Eindtermen wiskunde BBL WI/K/1 Oriëntatie op leren en WI/K/2 Basisvaardigheden Leervaardigheden in het WI/K/4 Algebraïsche verbanden Rekenen, meten en Meetkunde WI/K/7 Informatieverwerking, Geïntegreerde

Nadere informatie

Examenplanning 5 de leerjaar Juni 2016

Examenplanning 5 de leerjaar Juni 2016 Examenplanning 5 de leerjaar Juni 2016 Wiskunde - Getallenkennis BOEK B : Les 53 : Percenten Les 54 : Breuken, kommagetallen, percenten Les 58 : Percent berekenen deel 1 Herhalingsoefeningen Les 63 blz.

Nadere informatie

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ...

PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE. a) Begrippen uit de getallenleer ... PARATE KENNIS & VAARDIGHEDEN WISKUNDE 1 STE JAAR 1. TAALVAARDIGHEID BINNEN WISKUNDE a) Begrippen uit de getallenleer Bewerking optelling aftrekking vermenigvuldiging Symbool deling : kwadratering... machtsverheffing...

Nadere informatie

4 Jaarplan. 1 Leerplan

4 Jaarplan. 1 Leerplan Formule 1_Handleiding.indb 9 1/07/15 13:50 9 4 Jaarplan 1 Leerplan Het jaarplan is opgesteld volgens het leerplan VVKSO BRUSSEL D/2011/7841/021. De nummers van de doelstellingen in het jaarplan verwijzen

Nadere informatie

Les 11. Meetkundige begrippen. Lijnen. een gebogen lijn een gebroken lijn een rechte. Een rechte benoemen we met een kleine letter.

Les 11. Meetkundige begrippen. Lijnen. een gebogen lijn een gebroken lijn een rechte. Een rechte benoemen we met een kleine letter. WERKBOEK 3 Meetkundige begrippen Les 11 Dit kan ik al! Ik ken verschillende soorten lijnen. Ik weet wat een punt en een lijn is en kan die tekenen en noteren. Ik kan van een figuur zeggen of het een driehoek,

Nadere informatie

PQS en PRS PS is de bissectrice van ˆP

PQS en PRS PS is de bissectrice van ˆP OEFENINGEN 1 Kleur de figuren die congruent zijn met elkaar in dezelfde kleur. 2 Gegeven: PQS en PRS PS is de bissectrice van ˆP Gevraagd: Zijn de driehoeken congruent? Verklaar. 3 Gegeven: Gevraagd: Is

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde 1 Junior Wiskunde Olympiade 200-2005: tweede ronde De tweede ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2

Eindexamen wiskunde vmbo gl/tl 2008 - I OVERZICHT FORMULES: omtrek cirkel = π diameter. oppervlakte cirkel = π straal 2 OVERZICHT FORMULES: omtrek cirkel = π diameter oppervlakte cirkel = π straal 2 inhoud prisma = oppervlakte grondvlak hoogte inhoud cilinder = oppervlakte grondvlak hoogte inhoud kegel = 1 3 oppervlakte

Nadere informatie

Analytische Meetkunde

Analytische Meetkunde Analytische Meetkunde Meetkunde met Geogebra en vergelijkingen van lijnen 2 Inhoudsopgave Achtergrondinformatie... 4 Meetkunde met Geogebra... 6 Stelling van Thales...... 7 3 Achtergrondinformatie Auteurs

Nadere informatie

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken.

Bij de volgende vragen Bij een regelmatige veelhoek kun je het gemakkelijkst eerst de buitenhoeken berekenen en daarna pas de binnenhoeken. Rood-wit-blauw werkblad 1 Bij het hele werkblad: Alle rode getallen zijn deelbaar door hetzelfde getal. Elk wit getal is gelijk aan een rood getal + 1, elk blauw getal aan een rood getal + 2 Russisch vermenigvuldigen

Nadere informatie

Junior Wiskunde Olympiade : tweede ronde

Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 2007-2008: tweede ronde 1 Op de figuur stellen de getallen de grootte van de hoeken voor De waarde van x in graden is gelijk aan 2x 90 x 24 (A) 22 (B) 1 (C) (D) 8 (E) 57 2 Welke

Nadere informatie

aantal evaluatielessen

aantal evaluatielessen Jaarplanning Rekensprong Plus Rekensprong Plus heeft voor elk leerjaar een eenduidig jaarwerkplan. Elk werkschriftje van Rekensprong Plus overspant een periode tussen twee schoolvakanties werkschrift a

Nadere informatie

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte

7 Hoeken. Kern 3 Hoeken. 1 Tekenen in roosters. Kern 2 Hoeken meten Kern 3 Hoeken tekenen Kern 4 Kijkhoeken. Kern 1 Tegelvloeren. Kern 3 Oppervlakte 1 Tekenen in roosters Kern 1 Tegelvloeren Kern 2 Oppervlakte Kern 3 Het assenstelsel Kern 4 Rechthoeken 2 Rekenen Kern 1 De rekenmachine Kern 2 Voorrangsregels Kern 3 Afronden Kern 4 Afronden 3 Grafieken

Nadere informatie

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's Cabri-werkblad Driehoeken, rechthoeken en vierkanten 1. Eerst twee macro's Bij de opdrachten van dit werkblad zullen we vaak een vierkant nodig hebben waarvan alleen de beide eindpunten van een zijde gegeven

Nadere informatie

Lijnen van betekenis meetkunde in 2hv

Lijnen van betekenis meetkunde in 2hv Lijnen van betekenis meetkunde in 2hv Docentenhandleiding bij de DWO-module Lijnen van betekenis Deze handleiding bevat tips voor de docent bij het gebruiken van de module Lijnen van betekenis, een module

Nadere informatie

6.1 Rechthoekige driehoeken [1]

6.1 Rechthoekige driehoeken [1] 6.1 Rechthoekige driehoeken [1] In het plaatje hiernaast is een rechthoekige driehoek getekend. Aan elke zijde van deze driehoek ligt een vierkant. Het gele vierkant heeft een oppervlakte van 9 hokjes;

Nadere informatie

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16

2 Meten 2.1 2.1 Kaarten 2.1 2.2 Materialen en technieken 2.3 2.3 Meten en schetsen 2.12 2.4 Praktijkopdrachten 2.16 Inhoud Voorwoord v Het metrieke stelsel vii Inhoud ix Trefwoordenlijst x 1 Basis 1.1 1.1 Veel voorkomende berekeningen 1.1 1.2 Van punt tot vlak 1.4 1.3 Oppervlakten berekenen 1.12 1.4 Zelf tekenen 1.16

Nadere informatie

Deel 3 t.e.m. 11 van De Wiskanjers Zorg: Rekenmonsters

Deel 3 t.e.m. 11 van De Wiskanjers Zorg: Rekenmonsters Deel 3 t.e.m. 11 van De Wiskanjers Zorg: Rekenmonsters Het is onze taak als leerkracht om ervoor te zorgen dat we onze kinderen zodanig ondersteunen en begeleiden dat ze voor moeilijke vakonderdelen hun

Nadere informatie

wiskunde CSE GL en TL

wiskunde CSE GL en TL Examen VMBO-GL en TL 2008 tijdvak 1 donderdag 22 mei 13.30-15.30 uur wiskunde CSE GL en TL Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 23 vragen. Voor dit examen zijn maximaal 80 punten

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2005-2006: eerste ronde 1 Vier van de volgende figuren zijn het beeld van minstens één andere figuur door een draaiing in het vlak Voor één figuur is dit niet het geval Welke?

Nadere informatie

Veelvlak. Begrippenlijst

Veelvlak. Begrippenlijst Veelvlakken Tijdens dit project Veelvlakken ga je vooral veel zelf onderzoeken. Je zult veel aan het bouwen zijn met Polydron materiaal. Waarschijnlijk zul je naar aanleiding van je bevindingen zelf vragen

Nadere informatie

Hoofdstuk 4: HOEKEN. 4.5 Overstaande hoeken, aanliggende hoeken en nevenhoeken

Hoofdstuk 4: HOEKEN. 4.5 Overstaande hoeken, aanliggende hoeken en nevenhoeken 1-10 H4.Hoeken Hoofdstuk 4: HOEKEN 1. Wat moet ik leren? (handboek p. 144 170) 4.1 Hoeken Op de tekening van een hoek de benen, het hoekpunt en het binnengebied herkennen en benoemen. De definities van

Nadere informatie

aantal evaluatielessen

aantal evaluatielessen Jaarplanning Rekensprong Plus Rekensprong Plus heeft voor elk leerjaar een eenduidig jaarwerkplan. Elk werkschriftje van Rekensprong Plus overspant een periode tussen twee schoolvakanties werkschrift a

Nadere informatie

Caspar Bontenbal april 2015 WISKUNDE & KUNST. Eindverslag

Caspar Bontenbal april 2015 WISKUNDE & KUNST. Eindverslag Caspar Bontenbal 0903785 24 april 2015 WISKUNDE & KUNST Eindverslag Table of Contents Les 1 - Introductie wiskunde & kunst... 2 Opdracht 1.1... 2 Opdracht 1.2... 2 Les 2 - Wiskunde met Verve bloemlezing

Nadere informatie

PROBLEEMOPLOSSEND DENKEN MET

PROBLEEMOPLOSSEND DENKEN MET PROBLEEMOPLOSSEND DENKEN MET Van onderzoekend leren naar leren onderzoeken in de tweede en derde graad Luc Gheysens DPB-Brugge 2012 PROBLEEM 1 Stelling van Pythagoras en gelijkvormige driehoeken Hieronder

Nadere informatie

Neem [pr]=[ps] en beschrijf uit r en s twee cirkelbogen met dezelfde straal, die elkaar in c snijden. [cp] is de loodlijn op [ab].

Neem [pr]=[ps] en beschrijf uit r en s twee cirkelbogen met dezelfde straal, die elkaar in c snijden. [cp] is de loodlijn op [ab]. Met a en b als middelpunt en met straal groter dan de helft van [ab] trekt men met dezelfde straal twee cirkelbogen, die elkaar snijden in c en d; cd is de middelloodlijn en m het midden van [ab] Neem

Nadere informatie