( ) Formulekaart VWO. Kansrekening. Tellen. k n k. Binomium van Newton : Kansrekening. Voor toevalsvariabelen X en Y geldt: E ( X + Y ) = E(

Maat: px
Weergave met pagina beginnen:

Download "( ) Formulekaart VWO. Kansrekening. Tellen. k n k. Binomium van Newton : Kansrekening. Voor toevalsvariabelen X en Y geldt: E ( X + Y ) = E("

Transcriptie

1 Formulert VWO Telle! ( )... 0!!!( )! Biomium v Newto : Ksreei ( + ) Ksreei 0 Voor toevlsvriele X e Y el: E ( X + Y ) E( X ) + E( Y ) Voor ofhelije toevlsvriele X e Y el: σ ( X + Y ) σ ( X ) + σ ( Y ) -wet : ij ee serie v ofhelij v elr herhlde eerimete el voor de som S e het emiddelde X v de uitomste X: E( S) E( X ) σ ( S) σ ( X ) E ( X ) E( X ) Biomile verdeli σ ( X ) σ ( X ) Voor de iomil verdeelde toevlsvriele X, wrij het tl eerimete is e de s o succes er eer, el: P( X ) ( ) met 0,,,..., Verwchti: E( X ) Vritie: Vr( X ) ( ) Stdrdfwiji: σ ( X ) Vr( X ) ( ) Normle verdeli Voor ee toevlsvriele X die orml verdeeld is met emiddelde µ e stdrdfwiji σ el: µ Z X is stdrd orml verdeeld e σ µ ( ) µ Φ < P( X < ) P Z σ σ Hieri is Φ de cumultieve verdelisfuctie v de stdrdormle verdeli. Formulert VWO

2 Aler e verde Verelijie vereliji olossi voorwrde + + c 0 c c c lo + D D of 0, D 0 met D 4c lo lo c > 0, > 0 lo > 0, > 0, > 0, e l > 0 l e Mchte e loritme reel > 0 q + q > 0 q q : > 0 q q ( ) > 0 voorwrde > 0, > 0 ( ) > 0, > 0 lo lo > 0, 0, > 0, > 0, lo lo + lo lo > 0,, > 0, > 0 lo lo lo > 0,, > 0, > 0 lo lo > 0,, > 0 Verde Lieir verd H + t is de eiwrde e is de helli of richtiscoëfficiët Eoetieel verd H t is de eiwrde e is de roeifctor Hrmoische trilli d is de evewichtsstd, (c, d) is ee eiut, H d + si ( t c) of π is de eriode, is de mlitude e > 0, > 0 H d si ( t c) Formulert VWO

3 Somformules voor rije Voor de som S v de reeudie rij, + v, + v,..., + ( ) v el: eerste term + ltste term S Voor de som S v de meetudie rij, S r 0 r r ( r ) r, Voor de som S v de oeidie meetudie rij 3 r, r,..., r, r, r r 3,, el:... met - < r < el: S r 0 r Differetieverelijie recursievereliji u ( + ) u( ) + met eiwrde u( directe formule u ( ) + ( u( ) of ( u( 0 U ) u( ) U + ) met U Als < <, d el: eoetiële roei u( + ) u( ) u( ) u( loistische roei u( + ) u( ) + c u( ) G u( ) wrij G de reswrde is Differetiëre ( ) m v de reel fuctie feleide lim costte ml f ( c ( c f ( u( somreel s ( + ( s ( f ( + ( ) roductreel ( ( ( f ( ( + ( quotiëtreel q ( ( q ( f ( ( ( ( ( ) ettireel f ( ( ) f ( ( ) ( of df df d d d d Formulert VWO 3

4 stdrdfuctie feleide c f ( 0 e f ( e met > 0 f ( l l f ( f ( ) lo met > 0 e f ( l si f ( cos cos f ( si t f ( + t cos Lieire ederi v f i : L( f ( ) + f ( ) ( ) Iterere fuctie rimitieve + met - F( + c + F ( l + c met > 0 F( + c l e F ( ) e + c l F ( l + c f ( ) lo met > 0 e F( ( l + c l si F ( cos + c cos F ( si + c Lete v de rfie v f o het itervl [ ], : L + ( f ( ) d Ihoud v ee omwetelislichm otstt door de rfie v de fuctie f, I π ( ) d o het itervl [ ] om de -s te wetele: Formulert VWO 4

5 Goiometrie si t + cos t si( t) si t si( π t) cost si( π t) si t si t t t cos( t) cost cos( π t) si t cost cos( π t) cos t si t si t cost cos t cos t si t cos t si t t+ u t u si( t + u) si t cosu + cost si u si t + si u si cos t u t+ u si( t u) si t cosu cost si u si t si u si cos t+ u t u cos( t + u) cost cosu si t si u cos t + cosu cos cos t+ u t u cos( t u) cost cosu + si t si u cos t cosu si si si α si β eeft α β + π of α π β + π cos α cos β eeft α β + π of α β + π Prmeterromme Als ( ( t), y( t)) de ositie i het Oy-vl eeft v ee eweed ut o tijdsti t, d wor de selheidsvector o tijdsti t eeve door ( ( t), y ( t)). De selheid v het ut o tijdsti t wor eeve door : v ( t) ( ( t)) + ( y ( t)) e de lete v de felede we tusse de tijdstie t e t door: v( t) ( ( t)) + ( y ( t)) Eerie cirelewei met middelut ( m, ), strl r e hoeselheidω : ( t) m + r cosω( t t ) y( t) + r siω( t t ) Differetilverelijie 0 0 met π ω, wrij T de omlootijd is. T differetilvereliji olossie Eoetiële roei of vervl dy c y ct y( t) y( e Beresde roei dy c ( K y) met c > 0 -ct y( t) K + ( y( K) e Loistische roei dy G c y ( G y) y( t) met G de reswrde e cgt + e G y( y ( Stdrdlimiete lim 0 met > lim + e lim met > 0 Formulert VWO 5

6 Meetude Reee i cirels omtre cirel lete cireloo met middelutshoe α (rd) π r r is de strl α r r is de strl oervlte cirel π r r is de strl oervlte cirelsector met middelutshoe α (rd) Reee i driehoee α r r is de strl Stelli v Pythors: Als driehoe ABC ee rechte hoe i C heeft, d el: Omeeerde stelli v Pythors: Als i driehoe ABC el Cosiusreel: I ele driehoe ABC el c + Siusreel: I ele driehoe ABC el c siα si β siγ cosγ + c + c, d is hoe C recht Vle meetude; lijst v defiities e stellie De cursief edrute terme moe ls verwijzi i ee ewijs eruit worde. Meetudie ltse De verzmeli v lle ute die dezelfde fstd hee tot twee eeve ute A e B is de middelloodlij v het lijstu AB (middelloodlij). De verzmeli v lle ute ie ee hoe die dezelfde fstd hee tot de ee v die hoe is de deellij (issectrice) v die hoe (deellij). De verzmeli v lle ute die fstd r tot ee eeve ut M hee, is de cirel met middelut M e strl r (cirel). De verzmeli v lle ute die dezelfde fstd hee tot twee elr sijdede lije, is het deellijer (issectricer) v die twee lije (deellijer). De verzmeli v lle ute die dezelfde fstd hee tot twee evewijdie lije, is de midderllel v lijer (midderllel). De verzmeli v lle ute die elije fstd hee tot ee ut F e ee lij l is ee rool (rool). d P, F d P, l P o rool met rdut F e richtlij l ( ) ( ) P o ellis met rdute F e F d ( P F ) d( P, F ), costt + P o hyerool met rdute F e F d ( P F ) d ( P, F ), costt Formulert VWO 6

7 Hoee, lije e fstde De overstde hoee ij twee sijdede lije zij elij (overstde hoee). Als twee evewijdie lije esede worde door ee derde lij, d zij de F-hoee e Z-hoee elij (F-hoee, Z-hoee). Als twee lije i twee verschillede ute esede worde door ee derde lij wrij er ee r elije F-hoee of Z-hoee otree, d zij die twee lije evewijdi (F-hoee, Z-hoee). Ee rechte hoe is 90, ee estrete hoe is 80. De som v de hoee v ee driehoe is 80 (hoeesom driehoe). De fstd (ortste veridi) v ee ut tot ee lij is de lete v de loodlij eerelte vuit ut o die lij (fstd ut tot lij). Als drie ute A, B e C iet o éé lij lie d el: AB + BC > AC (driehoesoelijheid). Driehoee Gelijeie driehoe Als i ee driehoe twee hoee elij zij, d zij de teeoverliede zijde oo elij (elijeie driehoe). Als i ee driehoe twee zijde elij zij, d zij de teeoverliede hoee oo elij (elijeie driehoe). Gelije driehoee Twee driehoee zij elij (coruet) ls ze elij hee: Ee zijde e twee liede hoee. Ee zijde, ee liede hoe e de teeoverliede hoe. Twee zijde e de ieslote hoe. Alle zijde. Twee zijde e de rechte hoe teeover éé v die zijde. Gelijvormie driehoee Twee driehoee zij elijvormi ls ze elij hee: (HZH) (ZHH) (ZHZ) (ZZZ) (ZZR) Twee re hoee. Ee r hoee e de verhoudi v de omliede zijde. De verhoudi v de zijde. Ee r rechte hoee e de verhoudi v de twee iet-omliede zijde. (hh) (zhz) (zzz) (zzr) Formulert VWO 7

8 Vierhoee De som v de hoee v ee vierhoe is 360 (hoeesom vierhoe). Equivlete defiities e eiesche v ee rllellorm. Het is ee vierhoe met twee re evewijdie zijde. Het is ee vierhoe met twee re elije overstde zijde. Het is ee vierhoe wri twee overstde zijde elij zij e evewijdi. Het is ee vierhoe wri de diole elr middedoor dele. Equivlete defiities e eiesche v ee ruit. Het is ee rllellorm met vier elije zijde. Het is ee rllellorm wri ee diol ee hoe middedoor deelt. Het is ee rllellorm wri de diole elr loodrecht sijde. Equivlete defiities e eiesche v ee rechthoe. Het is ee vierhoe met vier rechte hoee. Het is ee rllellorm met ee rechte hoe. Het is ee rllellorm met elije diole. Rlijeiesche De rlij i ee ut P v ee rool mt elije hoee met de lij die P veri met het rdut e de lij door P loodrecht o de richtlij (rlijeiesch rool). De rlij i ee ut P v ee ellis of hyerool mt elije hoee met de lije die P veride met de twee rdute (rlijeiesch ellis of hyerool). Cireleiesche Bij elije oe ehore elije oorde (oo e oorde). De loodlij vuit het middelut o ee oorde deelt die oorde middedoor (loodlij o oorde). Stelli v Thles: Als hoe C i driehoe ABC recht is, d lit C o de cirel met middellij AB. Omeeerde stelli v Thles: Als C o de cirel met middellij AB lit, d is ACB recht. Stelli v de omtreshoe: Ele omtreshoe is hlf zo root ls de ijehorede middelutshoe. De hoe tusse ee rlij e ee oorde is elij de ij die oorde ehorede omtreshoe (hoe tusse oorde e rlij). Als ut C over de cireloo AB tusse de ute A e B eweet, d verdert de rootte v ACB iet (Stelli v de costte hoe). Als ut D dezelfde t v AB lit ls utc e ADB ACB, d lie C e D o dezelfde cireloo AB (Omeeerde stelli v de costte hoe). Koordevierhoestelli: Als ABCD ee oordevierhoe is, d is de som v el r overstde hoee 80 Omeeerde oordevierhoestelli: Als i ee vierhoe de som v ee r overstde hoee 80 is, d is het ee oordevierhoe. Ee rlij ee cirel stt loodrecht o de veridislij v middelut e rut (rlij). Formulert VWO 8

Formulekaart VWO wiskunde B

Formulekaart VWO wiskunde B Formulekrt VWO wiskude B Verelijkie + + c = 0 + D = of met D = 4c D = 0, D > 0 = c = = c / = c > 0, c > 0, > 0 lo l = lo = = > 0, > 0, lo l lo = = > 0, > 0, e = = l > 0 l = = e > 0 Mchte e loritme = /

Nadere informatie

Formulekaart VWO wiskunde B

Formulekaart VWO wiskunde B Formlekrt VWO B /9 Formlekrt VWO wiskde B Ksrekei Telle! = ( )... 0! =! = k k!( k)! Ksrekei Voor toevlsvriele X e Y eldt E( X + Y) = E( X) + E( Y ) Voor ofhkelijke toevlsvriele X e Y eldt σ( X + Y) = σ

Nadere informatie

Formulekaart Wiskunde havo/vwo

Formulekaart Wiskunde havo/vwo Formlekr Wiskde hvo/vwo Vierksvergelijkig Als! e " 4c #, d worde de olossige v de vierksvergelijkig + + c gegeve door 4c, " ± " Mche e logrime q $ + q ( > ) q ( ) q ( > ) ( $ ) $ (, > ) " ( > ) % (, >,!

Nadere informatie

Formulekaart VWO wiskunde B1 en B2

Formulekaart VWO wiskunde B1 en B2 Formulekrt VWO wiskunde B en B2 De Formulekrt Wiskunde hvo/vwo is gepubliceerd in Uitleg, Gele Ktern nr. 2, CEVO- 98/257. Deze versie vn de Formulekrt is die officiële versie. Vierkntsvergelijking Als

Nadere informatie

k H G I K J HG I kk J = Formulekaart Wiskunde havo/vwo Vierkantsvergelijking Machten en logaritmen Binomium van Newton Goniometrische formules

k H G I K J HG I kk J = Formulekaart Wiskunde havo/vwo Vierkantsvergelijking Machten en logaritmen Binomium van Newton Goniometrische formules Formlekr Wiskde hvo/vwo Vierksvergelijkig Als e 4 c, d worde de olossige v de vierksvergelijkig + + c = gegeve door 4c, = ± Mche e logrime q + q = ( > ) q ( ) q = ( > ) ( ) = = F H G I K J = ( >, ) ( >

Nadere informatie

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen

Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Lijst van formules en verwijzingen naar definities/stellingen die in het examen vwo wiskunde B wordt opgenomen Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eidexame wiskude B vwo 200 - II Formules Vlakke meetkude Verwijzige aar defiities e stellige die bij ee bewijs moge worde gebruikt zoder adere toelichtig. Hoeke, lije e afstade: gestrekte hoek, rechte

Nadere informatie

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2012. wiskunde B. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exmen VWO 2012 tijdvk 1 woensdg 16 mei 13.30-16.30 uur wiskunde B Bij dit exmen hoort een uitwerkbijlge. Dit exmen bestt uit 17 vrgen. Voor dit exmen zijn mximl 78 punten te behlen. Voor elk vrgnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 23 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 23 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eame VWO 200 tijdvak 2 woesdag 23 jui 3.30-6.30 uur wiskude B Bij dit eame hoort ee uitwerkbijlage. Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 80 pute te behale. Voor elk vraagummer staat

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Emen VW 20 tijdvk woensdg 8 mei 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. chter het correctievoorschrift is een nvulling opgenomen. Dit emen bestt uit 8 vrgen. Voor dit emen zijn miml

Nadere informatie

Deel D. Breuken en algebra n

Deel D. Breuken en algebra n Deel D Breue e lgebr 9 9 7 7 7 9 0 Reee et stroe (). stt voor ee obeed tuurlij getl 7 9 0 Met wordt bedoeld e dus oo 0 0 Vul i: et wordt bedoeld... e dus oo... Vul oo de vjes v de stroo i: Tel de getlle

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 6 januari 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

a a a en b b ac ax bx c 0 x a a ab pq en a a x x x e q px lnq x VWO-6 Wiskunde-B Tob-100 Algebra en xy xz x z maar Voorbeeld:

a a a en b b ac ax bx c 0 x a a ab pq en a a x x x e q px lnq x VWO-6 Wiskunde-B Tob-100 Algebra en xy xz x z maar Voorbeeld: VWO-6 Wiskunde-B To-00 Aler ( ) en ( ) ( )( ) 3 4 5 6 4 c 0 q en q c q q en y z z mr q q q q q q en Vooreeld: q q en ( ) q q 0, 0,4 0 4 5 0,6 en y z yz 4 3 4 7 Wortels vereenvoudien Bijv 8 9 3 en 8 Wortels

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 juni 4 Tijd: 4. - 7. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een redenering,

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 dinsdag 25 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2010 tijdvak 1 dinsdag 25 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 18 vragen. Voor dit examen zijn maximaal 84 punten te behalen. Voor elk

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 8 juli 04 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een

Nadere informatie

Eindexamen wiskunde B vwo 2010 - I

Eindexamen wiskunde B vwo 2010 - I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 1 woensdag 22 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 203 tijdvak woensdag 22 mei 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 9 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 20 juni uur. Bij dit examen hoort een uitwerkbijlage. Emen VWO 202 tijdvk 2 woensdg 20 juni 3.30-6.30 uur wiskunde B Bij dit emen hoort een uitwerkbijlge. Dit emen bestt uit 7 vrgen. Voor dit emen zijn miml 8 punten te behlen. Voor elk vrgnummer stt hoeveel

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: 3 januari Tijd: 9. -. uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 donderdag 23 juni uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 donderdag 23 juni uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 2016 tijdvak 2 donderdag 23 juni 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 16 vragen. Voor dit examen zijn maximaal 76 unten te behalen. Voor

Nadere informatie

Eindexamen vwo wiskunde B 2013-I

Eindexamen vwo wiskunde B 2013-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Met passer en liniaal

Met passer en liniaal Met passer en liniaal De opgaven in deze opdracht gaan over het teenen met passer en liniaal. Een liniaal gebrui je om rechte lijnen te teenen, dat an dus een recht latje zijn. Je mag daarvoor oo je geodriehoe

Nadere informatie

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad

Aanzet 1 tot een document van parate kennis en vaardigheden wiskunde 1 ste graad Anzet 1 tot een document vn prte kennis en vrdigheden wiskunde 1 ste grd 1. TAALVAARDIGHEID BINNEN WISKUNDE ) Begrippen uit de getllenleer Bewerking Symool optelling + ftrekking vermenigvuldiging deling

Nadere informatie

Eindexamen wiskunde B vwo 2010 - II

Eindexamen wiskunde B vwo 2010 - II Eideame wiskude B vwo 200 - II Sijde met ee hoogtelij Op ee cirkel kieze we drie vaste pute, B e C, waarbij lijstuk B gee middellij is e put C op de kortste cirkelboog B ligt. Ee put doorloopt dat deel

Nadere informatie

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen

Tentamen Wiskunde B. Het gebruik van een mobiele telefoon of andere telecommunicatieapparatuur tijdens het tentamen CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde B Datum: juli 00 Tijd: 4.00-7.00 uur Aantal opgaven: 5 Zet uw naam op alle in te leveren blaadjes. Laat bij elke opgave door middel van een berekening

Nadere informatie

Samenvatting - Wiskunde I

Samenvatting - Wiskunde I Smevtt - Wsue I Clculus Erly Trsceetls Jmes Stewrt 6th eto Sles v A. Al-Dhhr Appe A Getlle, Vermele, Oeljhee e Absolute Wre N = {0,,,, } Ntuurlje etlle Z = {,-,-,-,0,,,, } Gehele etlle Q = { } Rtole etlle

Nadere informatie

Hoofdstuk 5 - Meetkundige plaatsen

Hoofdstuk 5 - Meetkundige plaatsen oderne wiskunde 9e editie vwo deel Voorkennis: Eigenschappen en ewijzen ladzijde 138 V-1a Gegeven: Driehoek met hoeken :, en Te ewijzen: 180 ewijs: 1 3 Teken lijn door die evenwijdig loopt met : lijn door

Nadere informatie

Centrale Commissie Voortentamen Wiskunde. Syllabus voortentamen Wiskunde B

Centrale Commissie Voortentamen Wiskunde. Syllabus voortentamen Wiskunde B Centrale Commissie Voortentamen Wiskunde Syllabus voortentamen Wiskunde B Deze syllabus bevat een beschrijving van het programma van het voortentamen Wiskunde B dat wordt afgenomen door de Centrale Commissie

Nadere informatie

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12

Katern 3. Meetkunde. Inhoudsopgave. Inleiding. 1 Hoeken 2. 2 Congruentie en gelijkvormigheid 4. 3 Driehoeken 8. 4 Vierhoeken 12 Katern 3 Meetkunde Inhoudsopgave 1 Hoeken 2 2 Congruentie en gelijkvormigheid 4 3 Driehoeken 8 4 Vierhoeken 12 5 Lijnen in een driehoek 15 Inleiding De vlakke meetkunde is de meetkunde die zich afspeelt

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 18 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 04 tijdvak woensdag 8 juni.0-6.0 uur wiskunde ij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Hoeveel getallen van 2 verschillende cijfers kan je vormen met de cijfers 1,4,7,8? tweede cijfer 4 7 8 1 7 8 1 4 8 1 4 7

Hoeveel getallen van 2 verschillende cijfers kan je vormen met de cijfers 1,4,7,8? tweede cijfer 4 7 8 1 7 8 1 4 8 1 4 7 Hoofdstu Combiatorie. Basisregels Combiatorie is de studie va telprobleme. De ust va het telle bestaat vaa uit het codere of aders voorstelle va het telprobleem, zodat het uiteidelij volstaat om de volgede

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 0 tijdvak woensdag 8 mei 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Dit eamen bestaat uit 8 vragen. Voor dit eamen zijn maimaal 8 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO 2013. wiskunde B. tijdvak 2 woensdag 19 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag 9 juni.0-6.0 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 78 punten te behalen. Voor elk vraagnummer

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 18 mei 13:30-16:30 uur. Bij dit examen hoort een uitwerkbijlage. Eamen VW 06 tijdvak woensdag 8 mei 3:30-6:30 uur wiskunde ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 7 vragen. Voor dit eamen zijn maimaal 77 punten te behalen. Voor elk vraagnummer staat

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv V-a Voorkennis: ijzondere figuren ladzijde 30 50 60 = 80 50 60 = 70 d V-a Hoofdstuk 5 - efinities en stellingen Ja, de zwaartelijnen gaan door één punt: het zwaartepunt Ja, de hoogtelijnen gaan door één

Nadere informatie

Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting.

Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht

Atheneum Wispelberg - Wispelbergstraat 2-9000 Gent Bijlage - Leerfiche (3 e jaar 5u wiskunde): Meetkunde overzicht Hoofdstuk 1 : Hoeken -1 - Complementaire hoeken ( boek pag 7) Twee hoeken zijn complementair als... van hun hoekgrootten... is. Supplementaire hoeken ( boek pag 7) Twee hoeken noemen we supplementair als...

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overzicht eigenschappen en formules meetkunde xioma s Rechten en hoeken 3 riehoeken 4 Vierhoeken 5 e cirkel 6 Veelhoeken 7 nalytische meetkunde Op de volgende bladzijden vind je de eigenschappen en formules

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

3.1 Soorten hoeken [1]

3.1 Soorten hoeken [1] 3.1 Soorten hoeken [1] Let op: Een lijn heeft geen eindpunt; Een halve lijn heeft één eindpunt Een lijnstuk heeft twee eindpunten; Het plaatje is een bovenaanzicht; De persoon kan het gedeelte binnen de

Nadere informatie

Eindexamen vwo wiskunde B 2014-I

Eindexamen vwo wiskunde B 2014-I Eindexamen vwo wiskunde B 04-I Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte

Nadere informatie

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig

Vlakke Meetkunde. Les 1 Congruentie en gelijkvormig Vlakke Meetkunde Les 1 Congruentie en gelijkvormig (Deze les sluit aan bij het paragraaf 1 van Vlakke Meetkunde van de Wageningse Methode. Vlakke Meetkunde kun je downloaden vanaf de site van de Open Universiteit.

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2007-I

Eindexamen wiskunde B1-2 vwo 2007-I Eindemen wiskunde B- vwo 007-I Beoordelingsmodel Podiumverlichting mimumscore 3 sin α = r 650 V 650 r r r 650 r = 9 + invullen geeft V = 9 + sin α = r r = 9 + V = 650 650 = 9+ 9+ 9 + mimumscore 5 650 00

Nadere informatie

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 1 woensdag 13 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 015 tijdvak 1 woensdag 13 mei 13.30-16.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 17 vragen. Voor dit examen zijn maximaal 77 punten te behalen. Voor elk

Nadere informatie

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1. tijdvak 1 woensdag 16 mei 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Exame VW 007 tijdvak woesdag 6 mei.0-6.0 uur wiskude B Bij dit exame hoort ee uitwerkbijlage. Dit exame bestaat uit 0 vrage. Voor dit exame zij maximaal 8 pute te behale. Voor elk vraagummer staat hoeveel

Nadere informatie

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 05 tijdvak donderdag 8 juni 3.30-6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen.

wiskunde B Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Eamen VWO 04 tijdvak dinsdag 0 mei 3.30 uur - 6.30 uur wiskunde B Bij dit eamen hoort een uitwerkbijlage. Achter het correctievoorschrift is een aanvulling op het correctievoorschrift opgenomen. Dit eamen

Nadere informatie

Tentamen Wiskunde A CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari 2015 13.30 16.30 uur Aantal opgaven: 7

Tentamen Wiskunde A CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE. Datum: 16 januari 2015 13.30 16.30 uur Aantal opgaven: 7 CENTRALE COMMISSIE VOORTENTAMEN WISKUNDE Tentamen Wiskunde A Datum: 16 januari 2015 Tijd: 13.30 16.30 uur Aantal opaven: 7 Lees onderstaande aanwijzinen s.v.p. oed door voordat u met het tentamen beint.

Nadere informatie

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h

Een regenton. W is het vlakdeel dat wordt ingesloten door de x-as, de y-as, de grafiek van r en de lijn x h, met 0 h Een regenton Op het domein [0, ] is de functie r gegeven door r ( ) 5 5 5. W is het vlkdeel dt wordt ingesloten door de -s, de y-s, de grfiek vn r en de lijn h, met 0 h. Zie de onderstnde figuur. figuur

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

UITWERKINGEN VOOR HET VWO

UITWERKINGEN VOOR HET VWO UITWERKINGEN VOOR HET VWO EEL HOOFSTUK 5 GRENZEN Kern FSTNEN a) b) Nee. e zijden a en b zijn samen even lang. b a c ) a) Teken diagonaal In geldt ( ) In geldt 0 ( ) us is b) ijv. ) Te bewijzen: ewijs:

Nadere informatie

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek

dan liggen C en D op dezelfde cirkelboog AB (constante hoek) dus A, B, C en D liggen op één cirkel, dus ABCD is een koordenvierhoek . Omtrekshoeken en middelpuntshoeken Opgave : ACB is constant Opgave : a. * b. * c. ACB AMB Opgave 3: a. * b. de drie cirkels gaan door één punt c. de drie lijnstukken gaan door één punt Opgave 4: a. Teken

Nadere informatie

Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2

Lijnen en vlakken in. Klas 6N en 7N Wiskunde 5 perioden Kees Temme Versie 2 Lijnen en vlkken in Kls N en N Wiskunde perioden Kees Temme Versie . Coördinten in R³.... De vergelijking vn een vlk ().... De vectorvoorstelling vn een lijn.... De vectorvoorstelling vn een vlk... 8.

Nadere informatie

Eindexamen wiskunde B1-2 vwo 2001-I

Eindexamen wiskunde B1-2 vwo 2001-I Eindexamen wiskunde B- vwo 00-I 4 Antwoordmodel Boottocht Het gezochte punt is het snijpunt van en de middelloodlijn van het lijnstuk van het punt P aximumscore 6 = =, met het midden van dus = 90 Het punt

Nadere informatie

Hoofdstuk 6 Driehoeken en cirkels uitwerkingen

Hoofdstuk 6 Driehoeken en cirkels uitwerkingen Kern Meetkundige plaatsen a Zie afbeelding rechts. b In het niet-gearceerde deel. c Op de middenparallel. l m 2 a Teken lijn m en lijn n, beide evenwijdig aan l en op een afstand van 3 cm van l. b Punten

Nadere informatie

Correctievoorschrift VWO 2012

Correctievoorschrift VWO 2012 Correctievoorschrift VWO 0 tijdvk wiskunde B Het correctievoorschrift bestt uit: Regels voor de beoordeling Algemene regels Vkspecifieke regels 4 Beoordelingsmodel 5 Inzenden scores Regels voor de beoordeling

Nadere informatie

Hoofdstuk 5 : De driehoek

Hoofdstuk 5 : De driehoek Hoofdstuk 5 : De driehoek - 89 1. Congruente figuren Figuren die elkaar volkomen kunnen bedekken noemen we congruente figuren. Congruente figuren hebben dezelfde vorm (~ ) en dezelfde grootte (=). Als

Nadere informatie

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur

Examen VWO. wiskunde B (pilot) tijdvak 2 donderdag 18 juni uur Eame VW 05 tijdvak doderdag 8 jui.0-6.0 uur wiskude B (pilot) Dit eame bestaat uit 7 vrage. Voor dit eame zij maimaal 79 pute te behale. Voor elk vraagummer staat hoeveel pute met ee goed atwoord behaald

Nadere informatie

Hoofdstuk 5 - Definities en stellingen

Hoofdstuk 5 - Definities en stellingen Hoofdstuk 5 - efinities en stellingen Voorkennis: ijzondere figuren ladzijde 30 V-a 50 60 = 80 50 60 = 70 d Ja, de zwaartelijnen gaan door één punt: het zwaartepunt Ja, de hoogtelijnen gaan door één punt:

Nadere informatie

Werkblad TI-83: Over de hoofdstelling van de integraalrekening

Werkblad TI-83: Over de hoofdstelling van de integraalrekening Werkld TI-8: Over de hoofdstelling vn de integrlrekening. Inleiding We ekijken chtereenvolgens in onderstnde figuren telkens de grfiek vn een functie f met in het intervl [; ]. f ( ) = f ( ) = + y = 5

Nadere informatie

15 4 11 dus punt B ligt niet op lijn k

15 4 11 dus punt B ligt niet op lijn k Hoofdstu 9: Lijnen en iels. 9. Vegelijingen vn lijnen. Ogve :... 6 6 Ogve :.. dus unt ligt o lijn dus unt B ligt niet o lijn 6 7 dus unt C ligt o lijn 6 6 dus unt D ligt o lijn. q q q q 7q q 7 d. doo 6

Nadere informatie

eerste kennismaking met Maarten Jilderda geachte lezer,

eerste kennismaking met Maarten Jilderda geachte lezer, eerste keismki met Doordcht bouwe echte lezer, Om u ee eerste idruk te eve v mij werkzmhede ls bouwkudi er, teker e dviseur heb ik dit korte portfolio emkt. buro visie. Ee bouwwerk moet zich vorme v bieuit.

Nadere informatie

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax.

Onafhankelijk van a. f snijdt de x-as in punt A ( , 0) Voor elke positieve waarde van a is een functie f. gegeven door F ( x) = x e ax. Onfhnkelijk vn Voor elke positieve wrde vn is een functie f gegeven door f ( x) = (1 x) e x en een functie F gegeven door F ( x) = x e x. De functie 3p 1 Toon dit n. F is een primitieve functie vn f. De

Nadere informatie

PARADOXEN 9 Dr. Luc Gheysens

PARADOXEN 9 Dr. Luc Gheysens PARADOXEN 9 Dr Luc Gheyses LIMIETEN, AFGELEIDEN EN INTEGRALEN: ENKELE MERKWAARDIGE VERHALEN Ileidig: verhale over ifiitesimale Ee ifiitesimaal (of ifiitesimaal kleie waarde) is ee object dat mi of meer

Nadere informatie

Over de lengte van OH, OZ en OI in een willekeurige driehoek

Over de lengte van OH, OZ en OI in een willekeurige driehoek Over de lengte vn OH, OZ en OI in een willekeurige driehoek DICK KLINGENS (e-mil: dklingens@pndd.nl Krimpenerwrd College, Krimpen n den IJssel (Nederlnd pril 2007 1. De lengte vn OH en OZ De punten O,

Nadere informatie

R e g i o M i d d e n -L i m b u r g O o s t. G r e n z e l o o s w o n e n i n M i d d e n -L i m b u r g R e g i o n a l e W o o n v i s i e

R e g i o M i d d e n -L i m b u r g O o s t. G r e n z e l o o s w o n e n i n M i d d e n -L i m b u r g R e g i o n a l e W o o n v i s i e R e g i o M i d d e n -L i m b u r g O o s t G r e n z e l o o s w o n e n i n M i d d e n -L i m b u r g R e g i o n a l e W o o n v i s i e 4 o k t o b e r 2 0 0 6 P r o j e c t n r. 2 9 5 7. 7 2 B o

Nadere informatie

1 Bewerkingen met matrices invoeren via voorbeelden. , is een commutatieve groep.

1 Bewerkingen met matrices invoeren via voorbeelden. , is een commutatieve groep. 1 Bewerkige met mtrices ivoere vi voorbeelde 11 -tlle e de bewerkige ( 1, 2, 3,, ) is ee -tl met i De verzmelig v reële -tlle otere we met Defiieer de som ls ( 1, 2, 3,, ) + (b 1,b 2,b 3,,b ) = ( 1 +b

Nadere informatie

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw)

Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Samenvatting stellingen uit de meetkunde Moderne Wiskunde voor het VWO (bovenbouw) Meetkunde, Moderne Wiskunde, pagina 1/10 Rechthoekige driehoek In een rechthoekige driehoek is een van de hoeken in 90.

Nadere informatie

Overzicht eigenschappen en formules meetkunde

Overzicht eigenschappen en formules meetkunde Overziht eigenshppen en formules meetkunde 1 iom s Rehten en hoeken 3 riehoeken 4 Vierhoeken Op de volgende ldzijden vind je de eigenshppen en formules die je in de eerste grd geleerd het en deze die in

Nadere informatie

H a n d l e i d i n g d o e l m a t i g h e i d s t o e t s M W W +

H a n d l e i d i n g d o e l m a t i g h e i d s t o e t s M W W + H a n d l e i d i n g d o e l m a t i g h e i d s t o e t s M W W + D o e l m a t i g h e i d s t o e t s v o o r g e b i e d e n w a a r v o o r g e e n b o d e m b e h e e r p l a n i s v a s t g e s

Nadere informatie

Opgave 5 Onderzoek aan β -straling

Opgave 5 Onderzoek aan β -straling Eidexame vwo atuurkude 214-I - havovwo.l Opgave 5 Oderzoek aa β -stralig Zoals beked bestaat β -stralig uit elektroe. Om ee oderzoek aa β -stralig te doe heeft Harald ee radioactieve bro met P-32 late

Nadere informatie

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B. tijdvak 2 woensdag 22 juni 13.30-16.30 uur. Bij dit examen hoort een uitwerkbijlage. Examen VWO 0 tijdvak woensdag juni 3.30-6.30 uur wiskunde B Bij dit examen hoort een uitwerkbijlage. Dit examen bestaat uit 8 vragen. Voor dit examen zijn maximaal 79 punten te behalen. Voor elk vraagnummer

Nadere informatie

ď ď ď Ľ ť ď ť á ď ŕ í ŕ ď ť ŕť ť Ú ŕ í ď Ú é í éé Ľ í ť éé ŕ ď í ď í ŕ Ú Ť ť ť ť Ť ť ď í í ď ť Ô Ô í í ť éé í í ď Ť Ľ ď ď ď ť ď í ť ď ď ď í ŕ ŕ ŕ í ť á ť ť Ĺ ď ŕ ď á ť ď ď í ŕ ť ď ď ŕ ť ŕ ťí ď č Ô Ľ ŕ

Nadere informatie

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen:

6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 6.1 Kwadraten [1] HERHALING: Volgorde bij berekeningen: 1) Haakjes wegwerken 2) Vermenigvuldigen en delen van links naar rechts 3) Optellen en aftrekken van links naar rechts Schrijf ALLE stappen ONDER

Nadere informatie

Combinatoriek-mix groep 2

Combinatoriek-mix groep 2 Combatore-mx groep Tragsweeed, ovember 0 Theore De opgave deze hadout hebbe allemaal wat te mae met éé of meer va oderstaade oderwerpe Belagrj bj het mae va opgave s om et allee de theore de je et goed

Nadere informatie

Hoofdstuk 1 Rijen en webgrafieken

Hoofdstuk 1 Rijen en webgrafieken Hoofdstuk Rije e wegrafieke Voorkeis: Rije ladzijde V-a u 7 + v +, c De vergelijkig 7 + +, oplosse geeft, e dus 8. Ze hee eide 8 rode gelope. V- u, u met u V-a u + ( ) + + s u + u + u +... + u + + 8 +

Nadere informatie

Samenvatting. Fouriertheorie en distributies. Fourier en Schwartz. De warmtevergelijking. De exacte benadering

Samenvatting. Fouriertheorie en distributies. Fourier en Schwartz. De warmtevergelijking. De exacte benadering Samevattig Fouriertheorie e distributies De exacte beaderig Ileidig 2 De warmtevergelijkig Ja Wiegerick Korteweg - de Vries Istituut voor Wiskude Uiversiteit va Amsterdam 27 september 22 3 Oplossig door

Nadere informatie

Parate kennis wiskunde

Parate kennis wiskunde Heilige Mgdcollege Dendermonde Prte kennis wiskunde 4 Lt A Lt B Wet A Wet B Ec C Vkgroep wiskunde Hemco Dit document is edoeld ls smenvtting vn wt ls prte kennis wordt ngenomen ij nvng vn het tweede jr

Nadere informatie

Moderne wiskunde: berekenen zwaartepunt vwo B

Moderne wiskunde: berekenen zwaartepunt vwo B Moderne wiskunde: erekenen zwrtepunt vwo B In de edities 7 en 8 ws er in de slotdelen vn VWO B ruimte genomen voor een prgrf over het erekenen vn een zwrtepunt. In de negende editie is er voor gekozen

Nadere informatie

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β.

2. Waar of vals: Als een rechte a evenwijdig is met een vlak α en dat vlak staat loodrecht op een vlak β dan staat a loodrecht op β. 1 Synthetische RM 1. (a) Geef de definitie van de loodrechte stand van twee vlakken. (b) Geen stellingen die voorwaarden uitdrukken opdat twee vlakken orthogonaal zijn. (c) Steun op 1a of 1b om te bewijzen

Nadere informatie

Eindexamen wiskunde B vwo II

Eindexamen wiskunde B vwo II Formules Vlakke meetkunde Verwijzingen naar definities en stellingen die bij een bewijs mogen worden gebruikt zonder nadere toelichting. Hoeken, lijnen en afstanden: gestrekte hoek, rechte hoek, overstaande

Nadere informatie

Eindexamen wiskunde B 1 vwo I

Eindexamen wiskunde B 1 vwo I Eindeamen wiskunde B vwo - I Beoordelingsmodel Wisselingen in rijtjes ko en munt maimumscore Er zijn rijtjes met wisselingen, rijtjes met wisseling, rijtjes met wisselingen en rijtjes met 3 wisselingen

Nadere informatie

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek

Uitwerkingen Mei 2012. Eindexamen VWO Wiskunde B. Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Uitwerkingen Mei 01 Eindexamen VWO Wiskunde B A B C Nederlands Mathematisch Instituut Voor Onderwijs en Onderzoek Onafhankelijkheid van a Opgave 1. We moeten aantonen dat F a een primitieve is van de

Nadere informatie

Hoofdstuk 4. Opdracht 4.16. Algemene oplossing: Algemene oplossing: n 1 1 2 n 1 7/2. Algemene oplossing: + = + ( ) Algemene oplossing: Opdracht 4.

Hoofdstuk 4. Opdracht 4.16. Algemene oplossing: Algemene oplossing: n 1 1 2 n 1 7/2. Algemene oplossing: + = + ( ) Algemene oplossing: Opdracht 4. Hoofdsuk Opdrch.6 k x + xk = = r = Algemee oplossig: k r xk = + xk = + / k xk = + k 9 7 x = x + 7 x + x = 7 x x = + + + 7 = r = Algemee oplossig: r 7/ x = + x = + / x = 7 c α α ( α α ) x = x x x x = x

Nadere informatie

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN

NATUURLIJKE, GEHELE EN RATIONALE GETALLEN II NATUURLIJKE, GEHELE EN RATIONALE GETALLEN Iedereen ent getallen: de natuurlije getallen, N = {0,1,2,3,...}, gebruien we om te tellen, om getallen van elaar af te unnen treen hebben we de gehele getallen,

Nadere informatie

R e s u l t a a t g e r i c h t h e i d e n c o m p e t e n t i e m a n a g e m e n t b i j d r i e o v e r h e i d s o r g a n i s a t i e s

R e s u l t a a t g e r i c h t h e i d e n c o m p e t e n t i e m a n a g e m e n t b i j d r i e o v e r h e i d s o r g a n i s a t i e s R e s u l t a a t g e r i c h t h e i d e n c o m p e t e n t i e m a n a g e m e n t b i j d r i e o v e r h e i d s o r g a n i s a t i e s O p le i d i n g: M a s t e r P u b l i c M a n a g e m e n

Nadere informatie

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel.

Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Raaklijnen Verkennen Raaklijnen Inleiding Verkennen Gebruik de applet om de vragen te beantwoorden. Beweeg punt P over de cirkel. Uitleg Raaklijnen Uitleg Opgave 1 Bekijk de Uitleg. a) Wat is de vergelijking

Nadere informatie

Antwoordmodel - Vlakke figuren

Antwoordmodel - Vlakke figuren Antwoordmodel - Vlakke figuren Vraag 1 Verbind de termen met de juiste definities. Middelloodlijn Gaat door het midden van een lijnstuk en staat er loodrecht op. Bissectrice Deelt een hoek middendoor.

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

wiskunde B pilot vwo 2015-I

wiskunde B pilot vwo 2015-I wiskunde B pilot vwo 05-I Formules Goniometrie sin( tu) sintcosu costsinu sin( tu) sintcosu costsinu cos( tu) costcosusintsinu cos( tu) costcosusintsinu sin( t) sintcost cos( t) cos tsin t cos t sin t

Nadere informatie

Kleine didactiek DE VERSCHILFORMULE VOOR DE SINUS. [ Dick Klingens ]

Kleine didactiek DE VERSCHILFORMULE VOOR DE SINUS. [ Dick Klingens ] Kleine didactiek DE VERSCHILFORMULE VOOR DE SINUS [ Dick Klingens ] In de vierde klas vwo komt de uitbreiding van de goniometrische verhoudingen sinus en cosinus voor andere dan scherpe hoeken aan de orde.

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

T I P S I N V U L L I N G E N H O O G T E T E G E N P R E S T A T I E S B O M +

T I P S I N V U L L I N G E N H O O G T E T E G E N P R E S T A T I E S B O M + T I P S I N V U L L I N G E N H O O G T E T E G E N P R E S T A T I E S B O M + A a n l e i d i n g I n d e St a t e nc o m m i s si e v o or R ui m t e e n G r o e n ( n u g e n o em d d e St at e n c

Nadere informatie

Examen VWO. wiskunde B1,2. tijdvak 1 woensdag 28 mei uur. Bij dit examen hoort een uitwerkbijlage.

Examen VWO. wiskunde B1,2. tijdvak 1 woensdag 28 mei uur. Bij dit examen hoort een uitwerkbijlage. Eamen VWO 2008 tijdvak woensdag 28 mei 3.30-6.30 uur wiskunde,2 ij dit eamen hoort een uitwerkbijlage. it eamen bestaat uit 20 vragen. Voor dit eamen zijn maimaal 82 punten te behalen. Voor elk vraagnummer

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1994 1995 : Eerste Ronde. Vlmse Wiskunde Olmpide 994 995 : Eerste Ronde De eerste ronde bestt uit 30 meerkeuzevrgen, opgemkt door de jur vn VWO Het quoteringsssteem werkt ls volgt : een deelnemer strt met 30 punten Per goed ntwoord

Nadere informatie

OVERZICHT VAN DE FORMULES

OVERZICHT VAN DE FORMULES 80 OVERZIHT VN DE FORMULES Goioetrie Fucties op de goioetrische cirkel si² cos² si tg si cos tg cotg Relties Wrdes v veel voorkoede hoeke 0 0 45 60 90 si 0 cos 0 tg 0 - Goioetrische fucties i rechthoekige

Nadere informatie

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I

Eigenschappen van de bewerkingen in R Toets jezelf: herhalingsoefeningen voor examen I Toets jezelf: herhlingsoefeningen voor emen I - - Overzicht vn wt je moet kennen voor dit emen:. Alger:. Hoofdstuk : Reële getllen. Hoofdstuk : Eigenschppen vn de ewerkingen in R o Optellen, ftrekken,

Nadere informatie

Noordhoff Uitgevers bv

Noordhoff Uitgevers bv oofdstuk 0 - oeken en afstanden Voorkennis: Verhoudingen ladzijde 78 V-a e hoeken lijven gelijk want alleen de lengte van de zijden verandert en allemaal met dezelfde factor. Zijde met lengte wordt vergroot

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde.

1 Vlaamse Wiskunde Olympiade : Tweede Ronde. Vlaamse Wiskunde Olympiade 97-9: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (Annual High School Mathematics Examination - USA en

Nadere informatie