10. Controleopdrachten

Maat: px
Weergave met pagina beginnen:

Download "10. Controleopdrachten"

Transcriptie

1 Computeralgebra met Maxima 10. Controleopdrachten Functies en operatoren voor lijsten/vectoren/arrays Een van de eenvoudigste maar belangrijkste lusachtige functies is de makelist opdracht. Voor het gebruik van rijen van elementen (lijsten, vectoren in de meeste programmeertalen als arrays aangeduid) biedt Maxima een heel scala aan opdrachten. Belangrijkste functies/operatoren voor lijsten/arrays: makelist(u,k,m,n) makelist(u,k,z) create_list(u,k,z) Creëert de lijst [u(m), u(m+1),..., u(n)] in afhankelijkheid van k. Creëert de lijst [u(z 1 ), u(z 2 ),..., u(z n )], waarbij z zelf een lijst Alternatief voor makelist u[n] Selecteert het n-de element van de lijst u. Selecteert het eerste element van een lijst (vector). Op dezelfde first(u) wijze kunt u via second(u), third(u),, tot tenth(u) de andere elementen van u selecteren. Een andere mogelijkheid is nog last(u). length(u) delete(w,v) append(list1,list2) cons(a,v) rest(v,n) reverse(v) sort(v) Enkele voorbeelden : Retourneert het aantal elementen van u Wist alle expressies w in de lijst v Aan lijst1 worden de elementen van lijst2 toegevoegd. Voegt de expressie a toe aan het begin van lijst v ; a wordt daarmee het eerste element van lijst v. Retourneert v zonder de eerste n elementen Geeft een kopie van v, waarbij de elementen in de omgekeerde volgorde staan. Geeft een (oplopend) gesorteerde lijst 1

2 Controleopdrachten Toepassingen Tabel met functiewaarden Het komt in de wiskunde regelmatig voor dat we een tabel met functiewaarden nodig hebben. 2 Stel we willen een tabel van f ( x) = x x 1 op het interval [-2,3] met stapgrootte 0,5. Hint: Omdat de opdracht makelist geen optie step kent, maken we binnen makelist een lijst met de gewenst waarden (natuurlijk weer met makelist) en berekenen hiermee aansluitend de betreffende functiewaarden. Om een stapgrootte van 1 te kunnen gebruiken,verdubbelen we alle gewenste argumentwaarden. De gewenste argumentwaarden verkrijgen we nu door alle elementen van w door 2 te delen : De gewenste lijst met functiewaarden krijgen we nu eenvoudig als volgt : Uiteraard kunnen we dit resultaat ook in één opdracht bereiken : Opgave 10.1 a. 1 Maak een lijst met de eerste 20 elementen van de rij a n met a n = n 3 b. Maak door middel van de opdracht makelist de volgende lijst: c. Maak een lijst van de eerste 20 partiële sommen van de rij 1, 1, 1, 1,... 1! 3! 5! 7! 2

3 Computeralgebra met Maxima Opgave 10.2 Definieer een functie hoek(r,n), die de hoekpunten van een regelmatige n-hoek creëert met behulp van de opdracht makelist (straal van de omgeschreven cirkel = r). Teken met behulp van deze hoekpunten een regelmatige 6-hoek, met r = 4. Combinaties en driehoek van Pascal Via het gebruik van lijsten willen we de eerste 8 rijen van de driehoek van Pascal gaan construeren De n-de rij bestaat uit de getallen n. De getallen n C k : het aantal combinaties van k uit n, met k=0,1,., n C k zijn in Maxima beschikbaar via de functie combination (n,k) uit het pakket functs. We kunnen dan bijvoorbeeld de 5-de rij uit de driehoek van Pascal als volgt maken : 5 makelist ( C k, k, 0, 5) In Maxima ziet een en ander concreet als volgt uit : We moeten nu nog een lijst maken voor alle rijen vanaf rij met nummer n=0 tot en met rij met nummer n=8: Hier staat de driehoek van Pascal, waarbij alle rijen achter elkaar staan. 3

4 Controleopdrachten We willen natuurlijk elke rij op een nieuwe regel afdrukken. We maken daartoe gebruik van een echte lus opdracht : for.. thru.. do (zie paragraaf 9.3) : IF-opdracht De if opdracht biedt de mogelijkheid om berekeningen uit te voeren welke afhankelijk zijn van een of meerdere voorwaarden. Typische toepassingen zijn : gebruik als stopcriterium in recursies, definiëren van samengestelde functies. Het enkelvoudige if-statement ziet er als volgt uit : if cond_1 then expr_1 else expr_0 met de volgende betekenis : als cond_1 waar (true) is, dan wordt expr_1 uitgerekend en in alle andere gevallen wordt expr_0 berekend. Het samengestelde if-statement ziet er als volgt uit : if cond_1 then expr_1 elseif cond_2 then expr_2 elseif.. else expr_0 met de volgende betekenis : expr_k wordt uitgevoerd als cond_k true is én alle voorafgaande condities false zijn ; als alle condities false zijn dan wordt expr_0 berekend. Voorbeeld 1: Samengestelde functies 2 x x < 2 2 De functie f is gedefinieerd door : f ( x) = x 2 x 2 2 x x > 2 2 De eenvoudigste manier om f te definiëren in Maxima is via : f(x):= if (x<-2 or x>2) then x^2/2 else abs(x) 4

5 Computeralgebra met Maxima Algebravenster: Plotvenster: Voorbeeld 2: Recursie met if We beschrijven de faculteit van een natuurlijk getal in Maxima met behulp van de if - opdracht. De recursieve definitie luidt als volgt : facult(0)=1 facult(n)=n*facult(n-1) voor n>0 5

6 Controleopdrachten FOR-opdracht Voor het herhaald uitvoeren (iteraties) van dezelfde berekeningen beschikt Maxima, net als andere programmeertalen (Fortran, Algol, Pascal, Java) over de for-opdracht. Maxima kent de volgende varianten, welke alleen in het stopcriterium verschillen. for var: initial_value step increment thru limit do body for var: initial_value step increment while condition do body for var: initial_value step increment unless condition do body Hierbij mogen initial_value, increment, limit, en body willekeurige expressies zijn. Als de stapgrootte (increment) gelijk is aan 1, dan mag "step 1" worden weggelaten.. De uitvoering van het do-satement wordt altijd voorafgegaan door het initialiseren van de variabele var (controle-variabele) met de waarde initial_value. 6

7 Computeralgebra met Maxima Vervolgens: (1) Als de controle-variabele de limit van een thru heeft overschreden of als de condition van de unless true is, of als de condition van de while false is, dan eindigt de do. (2) De body wordt uitgevoerd. (3) De increment wordt opgeteld bij de controle-variabele var. De processen (1) tot en met (3 ) worden herhaald totdat voldaan is aan de stopconditie. Voorbeeld Probleem: We willen nu een functie schrijven loop_teller(n) welke de getallen 1 tot en met n bij elkaar optelt via een loop. De variabelen i en som uit het voorbeeld kunnen dan als lokale variabelen gebruikt worden. Opmerking: Lokale variabelen welke in een programma voorkomen moeten na de instructie block() in een lijst, tussen vierkante haken, opgesomd worden. loop_teller(n) :=block ( [i:0, som:0],.) geeft de waarde van n door aan het programma loop_teller. Dit programma gebruikt intern de lokale variabelen i en som Oplossing : 7

8 Controleopdrachten De andere twee varianten hierop zien er als volgt uit : Opgave 10.3 Schrijf een functie kapitaal_verd (k,p) welke berekent in hoeveel jaar een kapitaal k, bij een samengestelde interest van p procent per jaar, verdubbelt. 8

12. Uitwerkingen van de opgaven

12. Uitwerkingen van de opgaven 12. Uitwerkingen van de opgaven 12.1. Uitwerkingen opgaven van hoofdstuk 3 Opgave 3.1 3,87 0,152 641, 2 Bereken met behulp van Maxima: 2,13 7,29 78 0,62 45 (%i1) 3.87*0.152*641.2/(2.13*7.29*78*0.62*45);

Nadere informatie

6. Functies. 6.1. Definities en gebruik van functies/variabelen

6. Functies. 6.1. Definities en gebruik van functies/variabelen Computeralgebra met Maxima 6. Functies 6.1. Definities en gebruik van functies/variabelen Een van de belangrijkste gereedschappen in een CAS betreft het gebruik van functies (definitie, berekening en grafiek).

Nadere informatie

Als een PSD selecties bevat, deelt de lijn van het programma zich op met de verschillende antwoorden op het vraagstuk.

Als een PSD selecties bevat, deelt de lijn van het programma zich op met de verschillende antwoorden op het vraagstuk. HOOFDSTUK 3 3.1 Stapsgewijs programmeren In de vorige hoofdstukken zijn programmeertalen beschreven die imperatief zijn. is het stapsgewijs in code omschrijven wat een programma moet doen, net als een

Nadere informatie

8. Differentiaal- en integraalrekening

8. Differentiaal- en integraalrekening Computeralgebra met Maxima 8. Differentiaal- en integraalrekening 8.1. Sommeren Voor de berekening van sommen kent Maxima de opdracht: sum (expr, index, laag, hoog) Hierbij is expr een Maxima-expressie,

Nadere informatie

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Module 4 Programmeren

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Module 4 Programmeren HOOFDSTUK 3 3.1 Stapsgewijs programmeren De programmeertalen die tot nu toe genoemd zijn, zijn imperatieve of procedurele programmeertalen. is het stapsgewijs in code omschrijven wat een programma moet

Nadere informatie

II. ZELFGEDEFINIEERDE FUNCTIES

II. ZELFGEDEFINIEERDE FUNCTIES II. ZELFGEDEFINIEERDE FUNCTIES In Excel bestaat reeds een uitgebreide reeks van functies zoals SOM, GEMIDDELDE, AFRONDEN, NU enz. Het is de bedoeling om functies aan deze lijst toe te voegen door in Visual

Nadere informatie

Vakgroep CW KAHO Sint-Lieven

Vakgroep CW KAHO Sint-Lieven Vakgroep CW KAHO Sint-Lieven Objecten Programmeren voor de Sport: Een inleiding tot JAVA objecten Wetenschapsweek 20 November 2012 Tony Wauters en Tim Vermeulen tony.wauters@kahosl.be en tim.vermeulen@kahosl.be

Nadere informatie

Project Dynamica: oefenopgaven met R

Project Dynamica: oefenopgaven met R Project Dynamica: oefenopgaven met R De onderstaande opgaven dienen in R gemaakt te worden; uitwerkingen hoeven niet ingeleverd te worden. Zie de website http://www.r-project.org/ voor R manuals. Start

Nadere informatie

Propositielogica Het maken van een waarheidstabel

Propositielogica Het maken van een waarheidstabel Informatiekunde naam datum Propositielogica Het maken van een waarheidstabel Eindhoven, 4 juni 2011 De propositielogica Zoekopdrachten met de operatoren AND, OR en zijn zogenaamde Booleaanse expressies.

Nadere informatie

Leren Programmeren met Visual Basic 6.0 Les 3+4. Hoofdstuk 4 : De Selectie

Leren Programmeren met Visual Basic 6.0 Les 3+4. Hoofdstuk 4 : De Selectie Leren Programmeren met Visual Basic 6.0 Les 3+4 Hoofdstuk 4 : De Selectie Visual Basic 6.0 1 Basisstructuren (herhaling) Sequentie (HK2) : Alle opdrachten gewoon na mekaar uitvoeren. Hier worden geen keuzes

Nadere informatie

4. Vereenvoudigen expressies

4. Vereenvoudigen expressies Computeralgebra met Maxima 4. Vereenvoudigen expressies 4.1. Vereenvoudigen ratsimp De grote kracht van een Computer-Algebra-Systeem als Maxima ligt daarin, dat niet alleen numerieke expressies vereenvoudigd/berekend

Nadere informatie

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 )

Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub. Belgische Olympiades in de Informatica (duur : maximum 1u15 ) OI 2010 Finale 12 Mei 2010 Gegevens invullen in HOOFDLETTERS en LEESBAAR, aub VOORNAAM :....................................................... NAAM :..............................................................

Nadere informatie

{ auteur, toelichting }

{ auteur, toelichting } Programmeren Blok A Trilogie van (programmeer)talen http://www.win.tue.nl/ wstomv/edu/ip0/ College Syntaxis (vormleer): Hoe ziet t eruit, hoe schrijf je t? Tom Verhoeff Technische Universiteit Eindhoven

Nadere informatie

10 Meer over functies

10 Meer over functies 10 Meer over functies In hoofdstuk 5 hebben we functies uitgebreid bestudeerd. In dit hoofdstuk bekijken we drie andere aspecten van functies: recursieve functies dat wil zeggen, functies die zichzelf

Nadere informatie

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c

start -> id (k (f c s) (g s c)) -> k (f c s) (g s c) -> f c s -> s c Een Minimaal Formalisme om te Programmeren We hebben gezien dat Turing machines beschouwd kunnen worden als universele computers. D.w.z. dat iedere berekening met natuurlijke getallen die met een computer

Nadere informatie

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking

5. Vergelijkingen. 5.1. Vergelijkingen met één variabele. 5.1.1. Oplossen van een lineaire vergelijking 5. Vergelijkingen 5.1. Vergelijkingen met één variabele 5.1.1. Oplossen van een lineaire vergelijking Probleem : We willen x oplossen uit de lineaire vergelijking p x+q=r met p. Maxima biedt daartoe in

Nadere informatie

Tentamen Programmeren in C (EE1400)

Tentamen Programmeren in C (EE1400) TU Delft Tentamen Programmeren in C (EE1400) 5 april 2012, 9.00 12.00 Faculteit EWI - Zet op elk antwoordblad je naam en studienummer. - Beantwoord alle vragen zo nauwkeurig mogelijk. - Wanneer C code

Nadere informatie

Java Les 3 Theorie Herhaal structuren

Java Les 3 Theorie Herhaal structuren Java Les 3 Theorie Herhaal structuren Algemeen Een herhaal structuur een is programmeertechniek waarbij bepaalde Java instructies worden herhaald net zo lang tot een bepaalde voorwaarde is bereikt. Een

Nadere informatie

Programmeermethoden. Recursie. week 11: november kosterswa/pm/

Programmeermethoden. Recursie. week 11: november kosterswa/pm/ Programmeermethoden Recursie week 11: 21 25 november 2016 www.liacs.leidenuniv.nl/ kosterswa/pm/ 1 Pointers Derde programmeeropgave 1 Het spel Gomoku programmeren we als volgt: week 1: pointerpracticum,

Nadere informatie

Geven we decimale getallen als invoer, dan past Maxima zich onmiddellijk aan en geeft ook decimale getallen als resultaat:

Geven we decimale getallen als invoer, dan past Maxima zich onmiddellijk aan en geeft ook decimale getallen als resultaat: 3. Rekenkunde 3.1. Rekenmachine Maxima kan als een zakrekenmachine gebruikt worden voor het uitvoeren van eenvoudige en ingewikkelde berekeningen. Maxima rekent exact met gehele getallen, breuken en wortelvormen

Nadere informatie

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet.

OPDRACHT Opdracht 2.1 Beschrijf in eigen woorden wat het bovenstaande PSD doet. Les C-02: Werken met Programma Structuur Diagrammen 2.0 Inleiding In deze lesbrief bekijken we een methode om een algoritme zodanig structuur te geven dat er gemakkelijk programmacode bij te schrijven

Nadere informatie

Efficientie in de ruimte - leerlingmateriaal

Efficientie in de ruimte - leerlingmateriaal Junior College Utrecht Efficientie in de ruimte - leerlingmateriaal Versie 2 September 2012 Een project (ruimte-)meetkunde voor vwo-leerlingen Geschreven voor het Koningin Wilhelmina College Culemborg

Nadere informatie

slides6.pdf 16 nov

slides6.pdf 16 nov Inhoud Inleiding Algemeen 5 Waarom programmeertalen? Geschiedenis Abstractiemechanismen Programmeertalen Piet van Oostrum 16 november 2001 INL/Alg-5 1 X INL/Alg-5 1 X Machinecode Voor- en nadelen assemblercode

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N460) op donderdag 23 juni 2011, 1400-1700 uur Deel 1: Van 1400 uur tot uiterlijk

Nadere informatie

Hoofdstuk 7: Werken met arrays

Hoofdstuk 7: Werken met arrays Programmeren in Microsoft Visual Basic 6.0, lessenserie voor het voortgezet onderwijs HAVO/VWO David Lans, Emmauscollege, Marnix Gymnasium Rotterdam, januari 2004 Hoofdstuk 7: Werken met arrays 7.0 Leerdoel

Nadere informatie

De bouwstenen van het programmeren 1

De bouwstenen van het programmeren 1 De bouwstenen van het programmeren 1 I DE BOUWSTENEN VAN HET PROGRAMMEREN. Een programma is een beschrijving van acties (operaties, opdrachten) die moeten uitgevoerd worden. Deze acties spelen in op bepaalde

Nadere informatie

VAN HET PROGRAMMEREN. Inleiding

VAN HET PROGRAMMEREN. Inleiding OVERZICHT VAN HET PROGRAMMEREN Inleiding Als je leert programmeren lijkt het nogal overweldigend om die eerste stappen te doorworstelen. Er zijn dan ook heel wat programmeertalen (Java, Ruby, Python, Perl,

Nadere informatie

Small Basic Console Uitwerking opdrachten

Small Basic Console Uitwerking opdrachten Opdracht 1 3 getallen => inlezen Gemiddelde uitrekenen Resultaat afdrukken TextWindow.WriteLine("Dit programma berekend het gemiddelde van drie door U in te voeren getallen.") TextWindow.Write("Voer getal

Nadere informatie

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Informatie. Voorbeeld. Voorbeeld: toegangsprijs

HOOFDSTUK 3. Imperatief programmeren. 3.1 Stapsgewijs programmeren. 3.2 If Then Else. Informatie. Voorbeeld. Voorbeeld: toegangsprijs HOOFDSTUK 3 3.1 Stapsgewijs programmeren De programmeertalen die tot nu toe genoemd zijn, zijn imperatieve of procedurele programmeertalen. is het stapsgewijs in code omschrijven wat een programma moet

Nadere informatie

Functies. Huub de Beer. Eindhoven, 4 juni 2011

Functies. Huub de Beer. Eindhoven, 4 juni 2011 Functies Huub de Beer Eindhoven, 4 juni 2011 Functies: je kent ze al Je hebt al verschillende PHP functies gebruikt: pi() om het getal π uit te rekenen. sin( 0.453 ) om het de sinus van het getal 0.453

Nadere informatie

Lab Webdesign: Javascript 11 februari 2008

Lab Webdesign: Javascript 11 februari 2008 H3: HERHALINGSLUSSEN EN LOGICA Om de voorbeelden niet nodeloos lang te maken, zullen we in het vervolg niet altijd de SCRIPT-tags en de HTML-commentaarregels herhalen. Om de JavaScript-opdrachten --de

Nadere informatie

2004 Gemeenschappelijke proef Algebra - Analyse - Meetkunde - Driehoeksmeting 14 vragen - 2:30 uur Reeks 1 Notatie: tan x is de tangens van de hoek x, cot x is de cotangens van de hoek x Vraag 1 In een

Nadere informatie

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's

Cabri-werkblad. Driehoeken, rechthoeken en vierkanten. 1. Eerst twee macro's Cabri-werkblad Driehoeken, rechthoeken en vierkanten 1. Eerst twee macro's Bij de opdrachten van dit werkblad zullen we vaak een vierkant nodig hebben waarvan alleen de beide eindpunten van een zijde gegeven

Nadere informatie

De keuzestructuur. Versie DD

De keuzestructuur. Versie DD De keuzestructuur Versie DD Tot nu toe Programma in rechte lijn = sequentie of opeenvolging Nieuw Vertakking in parcours = selectie of keuzestructuur Controlestructuren Opeenvolging = sequentie Keuze =

Nadere informatie

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2 IJkingstoets 30 juni 04 - reeks - p. /5 Oefening Een functie f : A B : 7 f () van verzameling A naar verzameling B is injectief als voor alle, A geldt: als 6=, dan is f () 6= f (). Welke van de volgende

Nadere informatie

9.1 Recursieve en directe formules [1]

9.1 Recursieve en directe formules [1] 9.1 Recursieve en directe formules [1] Voorbeeld: 8, 12, 16, 20, 24, is een getallenrij. De getallen in de rij zijn de termen. 8 is de eerste term (startwaarde, u 0 ) 12 is de tweede term (u 1 ) 24 is

Nadere informatie

7 Omzetten van Recursieve naar Iteratieve Algoritmen

7 Omzetten van Recursieve naar Iteratieve Algoritmen 7 Omzetten van Recursieve naar Iteratieve Algoritmen Het lijkt mogelijk om elke oplossings-algoritme, die vaak in eerste instantie recursief geformuleerd werd, om te zetten in een iteratieve algoritme

Nadere informatie

A.C. Gijssen. 0.3 PHP en MySQL

A.C. Gijssen. 0.3 PHP en MySQL PHP en MySQL A.C. Gijssen 0.3 PHP en MySQL PHP en MySQL 0.4 Inhoudsopgave Voorwoord Deel 1 Over PHP 1.1 Inleiding...13 1.2 Wat is PHP?...14 1.3 De geschiedenis van PHP...15 1.4 Editor...16 1.5 PHP en websites...17

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

Negende college algoritmiek. 15 april Dynamisch Programmeren

Negende college algoritmiek. 15 april Dynamisch Programmeren Negende college algoritmiek 15 april 2016 Dynamisch Programmeren 1 algemeen Uit college 8: DP: - nuttig bij problemen met overlappende deelproblemen - druk een oplossing van het probleem uit in oplossingen

Nadere informatie

Graphics. Small Basic graphics 1/6

Graphics. Small Basic graphics 1/6 Small Basic graphics 1/6 Graphics Naast het werken met tekst kan je in Small Basic ook werken met grafische elementen: lijnen, vormen en kleuren. Hierbij gebruik je het grafische venster met de witte achtergrond.

Nadere informatie

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica

TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica TECHNISCHE UNIVERSITEIT EINDHOVEN Faculteit Wiskunde en Informatica Tentamen Numerieke Methoden voor Werktuigbouwkunde (2N46) op maandag 23 Deel 1: Van 14 uur tot uiterlijk 153 uur Het gebruik van het

Nadere informatie

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.

GEOGEBRA 4. R. Van Nieuwenhuyze. Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet. ? GEOGEBRA 4 R. Van Nieuwenhuyze Hoofdlector wiskunde, lerarenopleiding HUB, Brussel. Auteur Van Basis tot Limiet. roger.van.nieuwenhuyze@skynet.be Roger Van Nieuwenhuyze GeoGebra 4 Pagina 1 1. Schermen

Nadere informatie

inleiding theoretische informatica practicum 1 deadline woensdag 20 februari 2008 om uur

inleiding theoretische informatica practicum 1 deadline woensdag 20 februari 2008 om uur 1 Inleiding inleiding theoretische informatica 2007-2008 practicum 1 deadline woensdag 20 februari 2008 om 14.00 uur Dit practicum is een kennismaking met functioneel programmeren. Twee belangrijke functionele

Nadere informatie

Les S-02: Meer geavanceerde SQL-instructies

Les S-02: Meer geavanceerde SQL-instructies Les S-02: Meer geavanceerde SQL-instructies 2.0 Overzicht les 1: De basisvorm van een SQL query ziet er als volgt uit: (DISTINCT) selecteer de velden uit de tabel waar de volgende voorwaarde geldt ; Bij

Nadere informatie

Machten, exponenten en logaritmen

Machten, exponenten en logaritmen Machten, eponenten en logaritmen Machten, eponenten en logaritmen Macht, eponent en grondtal Eponenten en logaritmen hebben alles met machtsverheffen te maken. Een macht als 4 is niets anders dan de herhaalde

Nadere informatie

2. Een eerste kennismaking met Maxima

2. Een eerste kennismaking met Maxima . Een eerste kennismaking met Maxima Als u nog niet eerder kennis heeft gemaakt met CAS (Computer Algebra System) software, dan lijkt Maxima misschien erg gecompliceerd en moeilijk, zelfs voor het oplossen

Nadere informatie

Programmeren in Excel VBA beginners. Karel Nijs 2010/09

Programmeren in Excel VBA beginners. Karel Nijs 2010/09 Programmeren in Excel VBA beginners Karel Nijs 2010/09 Leswijze Eerst wat theorie Begeleid met (korte) oefeningen MsExcel 2003 Online hulp: http://www.ozgrid.com/vba/ http://msdn.microsoft.com/en-us/library/sh9ywfdk(vs.80).aspx

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

maplev 2012/5/1 15:47 page 469 #471 Procedures (vervolg)

maplev 2012/5/1 15:47 page 469 #471 Procedures (vervolg) maplev 2012/5/1 15:47 page 469 #471 Module 30 Procedures (vervolg) Onderwerp Voorkennis Expressies Procedures: Bereik van lokale variabelen, call by evaluated name, level-1-evaluatie van lokale variabelen,

Nadere informatie

1 Inleiding in Functioneel Programmeren

1 Inleiding in Functioneel Programmeren 1 Inleiding in Functioneel Programmeren door Elroy Jumpertz 1.1 Inleiding Aangezien Informatica een populaire minor is voor wiskundestudenten, leek het mij nuttig om een stukje te schrijven over een onderwerp

Nadere informatie

OEFENINGEN PYTHON REEKS 5

OEFENINGEN PYTHON REEKS 5 Vraag 1: Interpoleren (vervolg) OEFENINGEN PYTHON REEKS 5 Bouw verder op je code van Reeks 3, vraag 4. Voeg vier constanten toe aan je code: X0 = 280, Y0 = 0, Z0 = 50 en SIZE = 8. a) Teken een kubus met

Nadere informatie

Universiteit van Amsterdam FNWI. Voorbeeld van tussentoets Inleiding programmeren

Universiteit van Amsterdam FNWI. Voorbeeld van tussentoets Inleiding programmeren Universiteit van Amsterdam FNWI Voorbeeld van tussentoets Inleiding programmeren Opgave 1: Wat is de uitvoer van dit programma? public class Opgave { static int i = 0 ; static int j = 1 ; int i = 1 ; int

Nadere informatie

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde

1 Vlaamse Wiskunde Olympiade 2008-2009: tweede ronde Vlaamse Wiskunde Olmpiade 008-009: tweede ronde Wat is het voorschrift van deze tweedegraadsfunctie? (0, ) (, ) 0 (A) f() = ( + ) (B) f() = ( + ) + (C) f() = ( ) + (D) f() = ( ) (E) f() = ( ) + In volgend

Nadere informatie

Programmeren in Java les 3

Programmeren in Java les 3 4 september 2015 Deze les korte herhaling vorige week loops methodes Variabelen Soorten variabelen in Java: integer: een geheel getal, bijv. 1,2,3,4 float: een gebroken getal, bijv. 3.1415 double: een

Nadere informatie

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78

ICT. Meetkunde met GeoGebra. 2.7 deel 1 blz 78 ICT Meetkunde met GeoGebra 2.7 deel 1 blz 78 Om de opdrachten van paragraaf 2.7 uit het leerboek te kunnen maken heb je het computerprogramma GeoGebra nodig. Je kunt het programma openen via de leerlingenkit

Nadere informatie

Korte handleiding Maple bij de cursus Meetkunde voor B

Korte handleiding Maple bij de cursus Meetkunde voor B Korte handleiding Maple bij de cursus Meetkunde voor B Deze handleiding sluit aan op en is gedeeltelijk gelijk aan de handleidingen die gebruikt worden bij de cursussen Wiskunde 2 en 3 voor B. Er zijn

Nadere informatie

Faculteit Economie en Bedrijfskunde

Faculteit Economie en Bedrijfskunde Faculteit Economie en Bedrijfskunde Op dit voorblad vindt u belangrijke informatie omtrent het tentamen. Voordat u met het tentamen t: lees dit voorblad! Tentamen: V&O IV: Programmeren Tentamendatum &

Nadere informatie

[8] De ene 1 is de andere niet

[8] De ene 1 is de andere niet [8] De ene 1 is de andere niet Volg mee via 08_Types.py In de volgende leerfiche gaan we rekenen met Python. Dat kan je in een programma doen, maar dat kan je ook gewoon vanuit het Shell-venster doen.

Nadere informatie

OEFENINGEN PYTHON REEKS 1

OEFENINGEN PYTHON REEKS 1 Vraag 1: Expressies & Types OEFENINGEN PYTHON REEKS 1 Python maakt gebruik van enkele vaak voorkomende (data)types. Zo zijn er integers die behoren tot de gehele getallen (VB: 3), zijn er float s die behoren

Nadere informatie

17 Operaties op bits. 17.1 Bitoperatoren en bitexpressies

17 Operaties op bits. 17.1 Bitoperatoren en bitexpressies 17 Operaties op bits In hoofdstuk 1 is gezegd dat C oorspronkelijk bedoeld was als systeemprogrammeertaal om het besturingssysteem UNIX te implementeren. Bij dit soort toepassingen komt het voor dat afzonderlijke

Nadere informatie

GeoGebra Quickstart. Snelgids voor GeoGebra. Vertaald door Beatrijs Versichel en Ivan De Winne

GeoGebra Quickstart. Snelgids voor GeoGebra. Vertaald door Beatrijs Versichel en Ivan De Winne GeoGebra Quickstart Snelgids voor GeoGebra Vertaald door Beatrijs Versichel en Ivan De Winne Dynamische meetkunde, algebra en analyse vormen de basis van GeoGebra, een educatief pakket, dat meetkunde en

Nadere informatie

Informatica: C# WPO 10

Informatica: C# WPO 10 Informatica: C# WPO 10 1. Inhoud 2D arrays, lijsten van arrays, NULL-values 2. Oefeningen Demo 1: Fill and print 2D array Demo 2: Fill and print list of array A: Matrix optelling A: Matrix * constante

Nadere informatie

Syntax- (compile), runtime- en logische fouten Binaire operatoren

Syntax- (compile), runtime- en logische fouten Binaire operatoren Inhoud Syntax- (compile), runtime- en logische fouten Binaire operatoren Operaties op numerieke datatypen Evaluatie van expressies, bindingssterkte Assignment operaties en short-cut operatoren Controle

Nadere informatie

1.3 Rekenen met pijlen

1.3 Rekenen met pijlen 14 Getallen 1.3 Rekenen met pijlen 1.3.1 Het optellen van pijlen Jeweetnuwatdegetallenlijnisendat0nochpositiefnochnegatiefis. Wezullen nu een soort rekenen met pijlen gaan invoeren. We spreken af dat bij

Nadere informatie

Pascal uitgediept Data structuren

Pascal uitgediept Data structuren Pascal uitgediept Data structuren MSX Computer & Club Magazine nummer 68-juni/juli 1994 Herman Post Scanned, ocr ed and converted to PDF by HansO, 2001 In deze aflevering wordt bekeken hoe zelf een datastructuur

Nadere informatie

Opgave 1 - Uitwerking

Opgave 1 - Uitwerking Opgave 1 - Uitwerking Om dit probleem op te lossen moeten we een zogenaamd stelsel van vergelijkingen oplossen. We zetten eerst even de tips van de begeleider onder elkaar: 1. De zak snoep weegt precies

Nadere informatie

Vaak wil je een code schrijven, waar je verschillende acties uitvoeren voor verschillende beslissingen. Je kan daarbij keuzestructuren gebruiken.

Vaak wil je een code schrijven, waar je verschillende acties uitvoeren voor verschillende beslissingen. Je kan daarbij keuzestructuren gebruiken. PHP Les 5 : Interessante links: o http://www.dbzweb.be/moermant/ o http://www.ivobrugge.be/cursusweb/html4/formulieren.asp Vaak wil je een code schrijven, waar je verschillende acties uitvoeren voor verschillende

Nadere informatie

Een eenvoudig algoritme om permutaties te genereren

Een eenvoudig algoritme om permutaties te genereren Een eenvoudig algoritme om permutaties te genereren Daniel von Asmuth Inleiding Er zijn in de vakliteratuur verschillende manieren beschreven om alle permutaties van een verzameling te generen. De methoden

Nadere informatie

Programmeren (1) Examen NAAM:

Programmeren (1) Examen NAAM: Schrijf al je antwoorden op deze vragenbladen (op de plaats die daarvoor is voorzien) en geef zowel klad als net af. Bij heel wat vragen moet je zelf Java-code schrijven. Hou dit kort en bondig. Je hoeft

Nadere informatie

Inhoud hoofdstuk 2. Programmeren met herhaling en keuze. Introductie. Leerkern. Zelftoets. Terugkoppeling

Inhoud hoofdstuk 2. Programmeren met herhaling en keuze. Introductie. Leerkern. Zelftoets. Terugkoppeling Inhoud hoofdstuk 2 Programmeren met herhaling en keuze Introductie Leerkern 1 Algoritmen 2 Variabelen en toekenning 2.1 Variabelen en waarden 2.2 Toekenningen en uitdrukkingen 2.3 Variabelen in JavaLogo

Nadere informatie

Combinatoriek groep 2

Combinatoriek groep 2 Combinatoriek groep 2 Recursie Trainingsdag 3, 2 april 2009 Homogene lineaire recurrente betrekkingen We kunnen een rij getallen a 0, a 1, a 2,... op twee manieren definiëren: direct of recursief. Een

Nadere informatie

Oplossing: oefenzitting 2 Deze oefenzitting behandelt herhalingsopdrachten

Oplossing: oefenzitting 2 Deze oefenzitting behandelt herhalingsopdrachten Oplossing: oefenzitting 2 Deze oefenzitting behandelt herhalingsopdrachten BVP 2006-2007 1. Opwarmer a) 10 i= 0 i *( i + 1) = 440 b) int som = 0; for (int i = 5; i

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 2008 Minimum-Maimumproblemen (versie 11 augustus 2008) Inleiding In heel wat vraagstukken gaan we op zoek naar het maimum of het minimum van een zekere grootheid.

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken

compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken compileren & interpreteren - compileren: vertalen (omzetten) - interpreteren: vertolken - belangrijkste punten: - ontleden van de programmatekst - bijhouden van de datastructuren Data Structuren en Algoritmen

Nadere informatie

Derde college complexiteit. 7 februari Zoeken

Derde college complexiteit. 7 februari Zoeken College 3 Derde college complexiteit 7 februari 2017 Recurrente Betrekkingen Zoeken 1 Recurrente betrekkingen -1- Rij van Fibonacci: 0,1,1,2,3,5,8,13,21,... Vanaf het derde element: som van de voorgaande

Nadere informatie

Zelftest Inleiding Programmeren

Zelftest Inleiding Programmeren Zelftest Inleiding Programmeren Document: n0824test.fm 22/01/2013 ABIS Training & Consulting P.O. Box 220 B-3000 Leuven Belgium TRAINING & CONSULTING INLEIDING BIJ DE ZELFTEST INLEIDING PROGRAMMEREN Deze

Nadere informatie

INLEIDING TOT GEOGEBRA

INLEIDING TOT GEOGEBRA INLEIDING TOT GEOGEBRA Sven Mettepenningen, 28/02/2007 GEOGEBRA 1 EERSTE KENNISMAKING Het pakket Geogebra kan je downloaden op de site http://www.geogebra.at/ Eventueel is het ook nuttig van de laatste

Nadere informatie

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500

WISKUNDE-ESTAFETTE Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 WISKUNDE-ESTAFETTE 2012 60 Minuten voor 20 opgaven. Het totaal aantal te behalen punten is 500 1 (20 punten) Optellen De som van twee getallen van twee cijfers is een getal van drie cijfers (geen van deze

Nadere informatie

Introductie in R. http://www.math.montana.edu/stat/tutorials/r-intro.pdf http://www.math.montana.edu/stat/docs/splus_notes.ps

Introductie in R. http://www.math.montana.edu/stat/tutorials/r-intro.pdf http://www.math.montana.edu/stat/docs/splus_notes.ps Introductie in R R is een programmeer taal met een groot aantal voorgeprogrammeerde statistische functies. Het is de open source versie van S-plus. Wij gebruiken R dan ook omdat het gratis is. Documentatie

Nadere informatie

Zelftest Programmeren in PL/I

Zelftest Programmeren in PL/I Zelftest Programmeren in PL/I Document: n0830test.fm 26/03/2012 ABIS Training & Consulting P.. Box 220 B-3000 Leuven Belgium TRAINING & CNSULTING INLEIDING BIJ DE ZELFTEST PRGRAMMEREN IN PL/I m de voorkennis

Nadere informatie

Het warmteverlies van het lichaamsoppervlak aan de wordt gegeven door de volgende formule:

Het warmteverlies van het lichaamsoppervlak aan de wordt gegeven door de volgende formule: Opgave 1. (4 punten) Inleiding: Een vleermuis is een warmbloedig zoogdier. Dat wil zeggen dat hij zijn lichaamstemperatuur op een konstante waarde moet zien te houden. Als de omgeving kouder is dan de

Nadere informatie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie

recursie Hoofdstuk 5 Studeeraanwijzingen De studielast van deze leereenheid bedraagt circa 6 uur. Terminologie Hoofdstuk 5 Recursion I N T R O D U C T I E Veel methoden die we op een datastructuur aan kunnen roepen, zullen op een recursieve wijze geïmplementeerd worden. Recursie is een techniek waarbij een vraagstuk

Nadere informatie

Nieuwe invoercellen voeg je toe door de cursor tussen twee cellen in te zetten, en invoer in te tikken.

Nieuwe invoercellen voeg je toe door de cursor tussen twee cellen in te zetten, en invoer in te tikken. Technische Universiteit Eindhoven, 2007 Complexe getallen Mathematica In een invoercel kun je Mathematica commando's invullen. Door op Shift + Enter te drukken laat je Mathematica de berekening uitvoeren.

Nadere informatie

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument

Vijfde college complexiteit. 21 februari Selectie Toernooimethode Adversary argument Complexiteit 2017/05 College 5 Vijfde college complexiteit 21 februari 2017 Selectie Toernooimethode Adversary argument 1 Complexiteit 2017/05 Opgave 28 Gegeven twee oplopend gesorteerde even lange rijen

Nadere informatie

Het installatiepakket haal je af van de website http://www.gedesasoft.be/.

Het installatiepakket haal je af van de website http://www.gedesasoft.be/. Softmaths 1 Softmaths Het installatiepakket haal je af van de website http://www.gedesasoft.be/. De code kan je bekomen op de school. Goniometrie en driehoeken Oplossen van driehoeken - Start van het programma:

Nadere informatie

Inhoud leereenheid 4. Inleiding JavaScript. Introductie 99. Leerkern 100. Zelftoets 108. Terugkoppeling 109

Inhoud leereenheid 4. Inleiding JavaScript. Introductie 99. Leerkern 100. Zelftoets 108. Terugkoppeling 109 Inhoud leereenheid 4 Inleiding JavaScript Introductie 99 Leerkern 100 1 Leren programmeren in JavaScript 100 2 Chapter 1: Introduction 101 3 Chapter 2, paragrafen 1 t/m 5 102 4 Chapter 2, paragrafen 6

Nadere informatie

1 Rekenen met gehele getallen

1 Rekenen met gehele getallen 1 Inhoudsopgave 1 Rekenen met gehele getallen... 1.1 De gehele getallen... 1. Optellen... 1. Opgaven... 1. Aftrekken... 1. Opgaven... 1. Vermenigvuldigen... 1. Opgaven... 1.8 Delen... 9 1.9 Opgaven...9

Nadere informatie

voegtoe: eerst methode bevat gebruiken, alleen toevoegen als bevat() false is

voegtoe: eerst methode bevat gebruiken, alleen toevoegen als bevat() false is PROEF-Tentamen Inleiding programmeren (IN1608WI), X januari 2010, 9.00-11.00, Technische Universiteit Delft, Faculteit EWI, Afdeling 2. Open boek tentamen: bij het tentamen mag alleen gebruik worden gemaakt

Nadere informatie

Practicum Programmeerprincipes

Practicum Programmeerprincipes OPLOSSINGEN REEKS 1 KENNISMAKING MET PICO Evaluatie van expressies Practicum Programmeerprincipes 2009-2010 fvdbergh@vub.ac.be Oefening 1. Oplossing van deze kennismakingsoefening gegeven in de les. Oefening

Nadere informatie

Wat is FP? The Haskell School of Expression. Functies. Types 1+1=2. Iedere expressie (en waarde) heeft een type.

Wat is FP? The Haskell School of Expression. Functies. Types 1+1=2. Iedere expressie (en waarde) heeft een type. Wat is FP? The Haskell School of Expression Functioneel Programmeren Een andere manier om tegen programmeren aan te kijken Gebaseerd op het uitrekenen van expressies 1+1=2 Eenvoudig maar krachtig (modulair,

Nadere informatie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie

Vierde college complexiteit. 16 februari Beslissingsbomen en selectie Complexiteit 2016/04 College 4 Vierde college complexiteit 16 februari 2016 Beslissingsbomen en selectie 1 Complexiteit 2016/04 Zoeken: samengevat Ongeordend lineair zoeken: Θ(n) sleutelvergelijkingen

Nadere informatie

Combinatoriek en rekenregels

Combinatoriek en rekenregels Combinatoriek en rekenregels Les 2: Roosters en ongeordende grepen (deze les sluit aan bij de paragrafen 3 en 4 van Hoofdstuk 1 Combinatoriek en Rekenregels van de Wageningse Methode, http://www.wageningsemethode.nl/methode/het-lesmateriaal/?s=y456v-d)

Nadere informatie

8.0 Voorkennis ,93 NIEUW

8.0 Voorkennis ,93 NIEUW 8.0 Voorkennis Voorbeeld: In 2014 waren er 12.500 speciaalzaken. Sinds 2012 is het aantal speciaalzaken afgenomen met 7%. Bereken hoeveel speciaalzaken er in 2012 waren. Aantal 2014 = 0,93 Aantal 2012

Nadere informatie

Bij dit hoofdstukken horen geen opgaven.

Bij dit hoofdstukken horen geen opgaven. 6. Programmeertalen Een computer begrijpt eigenlijk alleen maar binaire code (bestaande uit 1 en 0). Om hem/haar makkelijk opdrachten te geven zijn programmeertalen ontwikkeld. Deze moeten een goed gedefinieerde

Nadere informatie

Inhoud hoofdstuk 2. Programmeren met herhaling en keuze. Introductie. Leerkern. Leereenheid 2 Programmeren met herhaling en keuze

Inhoud hoofdstuk 2. Programmeren met herhaling en keuze. Introductie. Leerkern. Leereenheid 2 Programmeren met herhaling en keuze Inhoud hoofdstuk 2 Programmeren met herhaling en keuze Introductie Leerkern 1 Algoritmen 2 Variabelen en toekenning 2.1 Variabelen en waarden 2.2 Toekenningen en uitdrukkingen 2.3 Variabelen in JavaLogo

Nadere informatie

De hoek tussen twee lijnen in Cabri Geometry

De hoek tussen twee lijnen in Cabri Geometry De hoek tussen twee lijnen in Cabri Geometry DICK KLINGENS (e-mail: dklingens@pandd.nl) Krimpenerwaard College, Krimpen aan den IJssel (NL) augustus 2008 1. Inleiding In de (vlakke) Euclidische meetkunde

Nadere informatie

Tentamen Object Georiënteerd Programmeren TI1200 30 januari 2013, 9.00-12.00 Afdeling SCT, Faculteit EWI, TU Delft

Tentamen Object Georiënteerd Programmeren TI1200 30 januari 2013, 9.00-12.00 Afdeling SCT, Faculteit EWI, TU Delft Tentamen Object Georiënteerd Programmeren TI1200 30 januari 2013, 9.00-12.00 Afdeling SCT, Faculteit EWI, TU Delft Bij dit tentamen mag je geen gebruik maken van hulpmiddelen zoals boek of slides. Dit

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie