Algemene relativiteitstheorie

Save this PDF as:
 WORD  PNG  TXT  JPG

Maat: px
Weergave met pagina beginnen:

Download "Algemene relativiteitstheorie"

Transcriptie

1 Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek / Kamer: T.69 Rooster informatie Hoorcollege: dinsdag 13:30 15:15, HG-0G30 (totaal 5 keer) Boek en website Dictaat: in ontwikkeling Zie website URL: Response op college 1

2 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe Ruimtetijd Minkowski ruimtetijd Tensoren Gekromde ruimtetijd Algemene coördinaten Covariante afgeleide Algemene relativiteitstheorie Einsteinvergelijkingen Newton als limiet Toepassingen ART Zwarte gaten Kosmologie Gravitatiestraling Copyright (C) Vrije Universiteit 009 Relatieve beweging Einstein 1905: Alle natuurwetten blijven dezelfde (zijn invariant) voor alle waarnemers die eenparig rechtlijnig t.o.v. elkaar bewegen. De lichtsnelheid is invariant heeft voor alle waarnemers dezelfde waarde. Einstein 191 Inertiaalsysteem: objecten bewegen in rechte lijnen als er geen krachten op werken (Newtons eerste wet). Indien een systeem met constante snelheid t.o.v. een inertiaalsysteem beweegt, dan is het zelf ook een inertiaalsyteem. 4

3 Lorentztransformaties Transformaties laten lichtsnelheid invariant Lorentz 190 Waarnemers in O en O bewegen met snelheid v t.o.v. elkaar. Systemen vallen samen op t = t = 0. Waarnemer in S kent (x, y, z, t) toe aan het event. Waarnemer in S kent (x, y, z, t ) toe aan hetzelfde event Wat is het verband tussen de coördinaten voor dit zelfde event? Lorentztransformaties Lorentztransformatie Inverse transformatie (snelheid v verandert van teken) 3

4 Relativiteit van gelijktijdigheid Stel dat in systeem O twee events, A en B, op dezelfde tijd, t A = t B, gebeuren, maar op verschillende plaatsen, x A x B. Invullen levert Events vinden niet simultaan plaats in systeem O Waarnemers O en O hebben verschillend besef van wat het nu is In 1905 werkt Einstein nog met verschillende tijden en 3D ruimten voor beide waarnemers en gebruikt de Lorentztransformaties om de ervaringen (meetgegevens) van beide waarnemers te relateren Er bestaan oneindig veel van deze inertiale waarnemers en evenveel tijden en 3D ruimten Er is één enkele ruimtetijd in de SRT In 1908 introduceerde Minkowski het begrip ruimtetijd: een vierdimensionale wereld Het belang van fotonen m.b.t. structuur van ruimtetijd: empirisch vastgestelde universaliteit van de voortplanting in vacuum Onafhankelijk van bewegingstoestand van de bron golflengte intensiteit polarisatie van EM golven ct deeltje in rust deeltje met willekeurige snelheid deeltje naar rechts bewegend met constante snelheid deeltje met lichtsnelheid 45 o x 4

5 Minkowskiruimte inproduct O waarnemer We kennen de vector toe aan de geordende events en Definitie: (, ) c 1 Afspraak: tijden voor negatief tijden na positief 1 E Dankzij het bestaan van een metriek (inproduct) kunnen we nu afstanden bepalen. Ruimtetijd heeft een metriek c en gelijktijdig als Dat wil zeggen Volgens A: Volgens B: Er geldt Lorentzinvariantie Minkowski-metriek (, ) Definitie: (, ) c 1 Met afspraak over het teken! (, ) c is onafhankelijk van de inertiele waarnemer door 1 (, ) c 1' ' k k 1 1 A1 B1 1 1' k k A B ' A Waarnemer A ' B Waarnemer B 1 1' ' 1 Scalair product is Lorentzinvariant A 1 1' B 1 5

6 Lorentzcoördinaten Definieer basisvector e0 Er geldt ( e0, e0) 1 OE E is verzameling puntgebeurtenissen die gelijktijdig zijn met O (t.o.v. A) Dat is de 3-dim euclidische ruimte op 0 t.o.v. A E is verzameling puntgebeurtenissen die gelijktijdig zijn met Er geldt M OE, O 0 ( l A ) Orthonormaal stelsel vectoren in E met beginpunt O e, e, e 1 3 Er geldt ( e, e ) 1 en ( e, e ) 1 1 En ook ( e0, e i ) 0 i j ij s 1 s E e 0 0 s O 1 s s l A Waarnemer A (inertieel) e 1 Minkowski meetkunde Basisvectoren e met 0,1,,3 1 als 0 We hebben gevonden dat ( e, e) 1 als i 0 overige gevallen Nieuw symbool Minkowskimetriek ( e, e ) Het invariante lijnelement Notatie bevat metriek en coordinaten Voor cartesische coordinaten Inverse Lijnelement uitschrijven Dezelfde tijd: Ruimtelijke termen: Stelling van ythagoras Dezelfde plaats: het lijnelement is een maat voor de tijd verstreken tussen twee gebeurtenissen voor een waarnemer die in rust is ten opzichte van deze gebeurtenissen Dan geldt 6

7 Minkowskiruimte ct Ruimtetijd geometrie ( s) ( ct) x Welke zijde van driehoek ABC is het langst? Welk de kortste? Wat zijn de lengten? AB = 5, BC = 3, AC = wortel( ) = 4 A C C B A B x Wat is het kortste pad tussen punten A en C? De rechte lijn tussen A en C, of het pad ABC? Rechte pad AC is kortste pad tussen A en C Idem voor driehoek A B C A B = B C = wortel(-3 +3 ) = 0 en A C = 6 ad is A B C met lengte 0. ( s) ( ct) x 0 x c t Tweelingparadox ( s) ( ct) x ( c ) Tweelingparadox ct Smith en Jones zijn tweelingen, beiden 30 jaar oud. Jones vliegt naar Sirius en reist met 8/10 van de lichtsnelheid. Als hij Sirius bereikt, komt hij meteen terug. Jones, gaat snel, maar Sirius is ver. Jones is 0 jaar weg en als hij terugkeert is Smith 50. Hoe oud is Jones? C=(0,0) B=(10,8) S J A=(0,0) x ( s) ( ct) x ( c ) 7

8 Minkowskiruimte: causale structuur tijdachtig: ds negatief lichtachtig: ds = 0 toekomst ruimteachtig: ds positief verleden Binnen de lichtkegel kunnen gebeurtenissen causaal verbonden zijn met gebeurtenis. Er buiten kan geen causaal verband bestaan. Minkowskiruimte Bewegende waarnemers s c t x v ct' ( ct x) c x' ( x vt) Voor de x as: stel ct =0. Dan volgt ct = bx. Voor de schaal op de x as: stel x =1 en ct =0. Dan volgt x=. Voor de ct as: stel x =0. Dan volgt ct = x/b. Voor de schaal op de ct as: stel ct =1 en x =0. Dan volgt ct=. 8

9 Minkowski ruimtetijd Gebeurtenis (event) 1 heeft coöordinaten Waarnemer O: (ct 1, x 1 ) Waarnemer O : (ct 1, x 1 ) Lees (ct 1, x 1 ) in O af door lijnen // aan ct en x assen te trekken Voor waarnemer O gebeurt event 1 op dezelfde tijd als event en op dezelfde plaats als event 3 Voor waarnemer O is de volgorde van de events: 0,, 3, 1 event 0 op (0,0) Volgorde voor gebeurtenissen en 3 is verschillend voor beide waarnemers Dit lijkt schokkend: het kan ons begrip van causaliteit omver werpen ct event event 3 event 1 Voor waarnemer O is de volgorde van de events: 0 en 3 gelijktijdig, dan 1 en gelijktijdig De SRT respecteert causaliteit mits we geen signalen met snelheden > c toestaan! Lichtkegels zijn van groot belang: event in kegel van 0, en 1 in kegel van 3 ct 1 x 1 x 9

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 1: 5 november 015 Copyright (C) Vrije Universiteit 015 Overzicht Docent informatie Jo van den Brand, Gideon Koekoek Email: jo@nikhef.nl, gkoekoek@gmail.com

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 30 september 013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Deeltjes en velden. HOVO Cursus. Jo van den Brand 3 oktober

Deeltjes en velden. HOVO Cursus. Jo van den Brand 3 oktober Deeltjes en velden HOVO Cursus Jo van den Brand 3 oktober 013 jo@nikhef.nl Docent informatie Overzicht Jo van den Brand & Gideon Koekoek Email: jo@nikhef.nl en gkoekoek@gmail.com 060 539 484 / 00 59 000

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Jeroen Meidam Speciale relativiteitstheorie: 1 en 8 oktober 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 7 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme

Nadere informatie

Elementaire Deeltjesfysica

Elementaire Deeltjesfysica Elementaire Deeltjesfysica FEW Cursus Jo van den Brand 10 November, 2009 Structuur der Materie Inhoud Inleiding Deeltjes Interacties Relativistische kinematica Lorentz transformaties Viervectoren Energie

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Les 2: 8 september 2015 Copyright (C) Vrije Universiteit 2009 Overzicht Docent informatie Jo van den Brand, Joris van Heijningen Email: jo@nikhef.nl,

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 2: 12 november 2015 Copyright (C) Vrije Universiteit 2015 Ruimte: verzameling met structuur 3D varieteit kan lokaal Euclidisch zijn 4D ruimtetijd

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Mark Beker Einsteinvergelijkingen: 7 oktober 009 Traagheid van gasdruk SRT: hoe hoger de gasdruk, des te moeilijker is het om het gas te versnellen

Nadere informatie

relativiteitstheorie

relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 3: 19 november 2015 Copyright (C) Vrije Universiteit 2015 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen ART: 3 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Sferische oplossingen: 10 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 3 en 4: Covariant differentiëren en kromming Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1.

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1. Kepler

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie en hoe u die zelf had kunnen bedenken. HOVO Utrecht les 1 en 2: Klassieke gravitatie, geodeten Dr. Harm van der Lek vdlek@vdlek.nl Natuurkunde hobbyist Programma 1 1. Kepler

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosologie FEW Cursus Jo van den Brand & Joris van Heijningen Speciale relativiteitstheorie: 6 oktober 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke echanica

Nadere informatie

Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber

Tijd & causaliteit Relativiteitstheorie Pijl van de tijd Samenvatting. Tijd in de fysica. Paul Koerber Tijd in de fysica Paul Koerber Postdoctoraal Onderzoeker FWO Instituut voor Theoretische Fysica, K.U.Leuven Kunsthumaniora Brussel, 2 maart 2011 1 / 16 Wat is tijd? Een coördinaat om de positie van een

Nadere informatie

Relativiteit. Relativistische Mechanica 1

Relativiteit. Relativistische Mechanica 1 Relativiteit University Physics Hoofdstuk 37 Relativistische Mechanica 1 Relativiteit beweging voorwerp in 2 verschillende inertiaal stelsels l relateren Galileo Galileïsche transformatie 2 Transformatie

Nadere informatie

Gravitatie en kosmologie maandag 7 oktober 2013 OPGAVEN WEEK 6

Gravitatie en kosmologie maandag 7 oktober 2013 OPGAVEN WEEK 6 1 Gravitatie en kosmologie maandag 7 oktober 013 OPGAVEN WEEK 6 Opgave 1: We bespreken kort Rindler space en de connectie met de Tweelingparadox. We kijken naar een uniform versnelde waarnemer (we beschouwen

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Relativistische inflatie: 3 december 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen Neutronensterren

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Kromlijnige coördinaten: 28 oktober 2013 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen

Nadere informatie

Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S.

Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S. Speciale relativiteit Een series colleges over de Speciale Relativiteit theorie van Einstein, uitgebreid met onderwerpen uit de Klassieke Mechanica Prof.dr. S. Bentvelsen 1 Even voorstellen S. Bentvelsen

Nadere informatie

HOVO: Gravitatie en kosmologie OPGAVEN WEEK 1

HOVO: Gravitatie en kosmologie OPGAVEN WEEK 1 HOVO: Gravitatie en kosmologie OPGAVEN WEEK Opgave : Causaliteit In het jaar 300 wordt door de Aardse Federatie een ruimteschip naar een Aardse observatiepost op de planeet P47 gestuurd. Op de maan van

Nadere informatie

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra

Dossier 4 VECTOREN. Dr. Luc Gheysens. bouwstenen van de lineaire algebra Dossier 4 VECTOREN bouwstenen van de lineaire algebra Dr. Luc Gheysens 1 Coördinaat van een vector In het vlak π 0 is het punt O de oorsprong en de punten E 1 en E 2 zijn zodanig gekozen dat OE 1 OE 2

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Kromlijnige coördinaten: 13 oktober 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica

Nadere informatie

Cursus deeltjesfysica

Cursus deeltjesfysica Cursus deeltjesfysica Bijeenkomst 1 (5 maart 2014) de speciale relativiteitstheorie prof Stan Bentvelsen en prof Jo van den Brand Nikhef - Science Park 105-1098 XG Amsterdam s.bentvelsen@uva.nl - jo@nikhef.nl

Nadere informatie

Docentencursus relativiteitstheorie

Docentencursus relativiteitstheorie Docentencursus relativiteitstheorie Uitwerkingen opgaven bijeenkomst 1, "Waarom relativiteit?" 18 september 2013 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven

Nadere informatie

Relativiteitstheorie met de computer

Relativiteitstheorie met de computer Relativiteitstheorie met de computer Jan Mooij Mendelcollege Haarlem Met een serie eenvoudige grafiekjes wordt de (speciale) relativiteitstheorie verduidelijkt. In vijf stappen naar de tweelingparadox!

Nadere informatie

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde

Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Einstein, Euclides van de Fysica Door Prof. Henri Verschelde Albert Einstein en Euclides Geboren te Ulm op 14 maart 1879 Als kind geinteresseerd in Wiskunde en wetenschappen:magneten,electromotoren, wiskundige

Nadere informatie

2 SPECIALE RELATIVITEITSTHEORIE

2 SPECIALE RELATIVITEITSTHEORIE 2 SPECIALE RELATIVITEITSTHEORIE 35 2 SPECIALE RELATIVITEITSTHEORIE 2.1 Historishe introdutie en Einsteins postulaten De relativiteitstheorie is geboren in het prille begin van de twintigste eeuw. De negentiende

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie 1 Gravitatie en kosmologie door Prof.dr Johannes F.J. van den Brand Afdeling Natuurkunde en Sterrenkunde Faculteit der Exacte Wetenschappen Vrije Universiteit Amsterdam en Nationaal instituut voor subatomaire

Nadere informatie

Speciale relativiteitstheorie: de basisconcepten in een notedop

Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie: de basisconcepten in een notedop Speciale relativiteitstheorie:... 1 de basisconcepten in een notedop... 1 1. Klassieke Relativiteit... 1 1.1 Twee waarnemers zien een verschillende

Nadere informatie

Gravitatie en Kosmologie

Gravitatie en Kosmologie Gravitatie en Kosmologie FEW cursus Jo van den Brand & Jeroen Meidam Les 1: 3 september 2012 Parallax Meten van afstand Meet positie van object ten opzichte van achtergrond De parallaxhoek q, de afstand

Nadere informatie

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden

Ruimtewiskunde. college. Het inwendig- en het uitwendig product. Vandaag. Hoeken Orthogonaliteit en projecties. Toepassing: magnetische velden college 2 - en het uitwendig collegejaar college build slides Vandaag : : : : 6-7 2 30 mei 207 30 2 3 4 5 Hoeken Orthogonaliteit en projecties Toepassing: magnetische velden.6-7[2] vandaag meetkundig Section

Nadere informatie

De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox. Metius Werkgroep Theoretische Weer- en Sterrenkunde

De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox. Metius Werkgroep Theoretische Weer- en Sterrenkunde De Speciale Relativiteits Theorie (SRT) en Klok- en Tweelingparadox Metius Werkgroep Theoretische Weer- en Sterrenkunde Juli 2010 Inhoud Inleiding SRT postulaten en Lorentz transformatie Tijddilatatie

Nadere informatie

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden

Hoofdstuk 1 LIJNEN IN. Klas 5N Wiskunde 6 perioden Hoofdstuk LIJNEN IN Klas N Wiskunde 6 perioden . DE VECTORVOORSTELLING VAN EEN LIJN VOORBEELD. Gegeven zijn de punten P (, ) en Q (, 8 ). Gevraagd: de vectorvoorstelling van de lijn k door P en Q. Methode:

Nadere informatie

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam

Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde Andrré van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s Relativiteits theorie Een uitleg met middelbare school wiskunde André van der Hoeven Docent natuurkunde Emmauscollege Rotterdam Einstein s speciale relativiteitstheorie, maarr dan begrijpelijk

Nadere informatie

Speciale Relativiteitstheorie

Speciale Relativiteitstheorie NS106b/2014-2015 Versie 31/07/2014 Speciale Relativiteitstheorie Stefan Vandoren Instituut voor Theoretische Fysica Universiteit Utrecht Dictaat Dit is een collegedictaat in voorbereiding. De tekst is

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie Speciale relativiteitstheorie De drie vragen van Einstein Wat is licht? Wat is massa? Wat is tijd? In 1905, Einstein was toen 26 jaar! Klassiek: wat is licht? Licht is een golf, die naar alle kanten door

Nadere informatie

Het Quantum Universum. Cygnus Gymnasium

Het Quantum Universum. Cygnus Gymnasium Het Quantum Universum Cygnus Gymnasium 2014-2015 Wat gaan we doen? Fundamentele natuurkunde op de allerkleinste en de allergrootste schaal. Groepsproject als eindopdracht: 1) Bedenk een fundamentele wetenschappelijk

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 13 februari 013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c 1 Lorentztransformaties In een inertiaalstelsel bewegen alle vrije deeltjes met een

Nadere informatie

Lengte van een pad in de twee dimensionale Euclidische ruimte

Lengte van een pad in de twee dimensionale Euclidische ruimte Lengte van een pad in de twee dimensionale Euclidische ruimte Bekijk een willekeurig pad van naar. Verdeel het pad in kleine stukjes die elk voor zich als rechtlijnig beschouwd kunnen worden. De lengte

Nadere informatie

Speciale relativiteitstheorie

Speciale relativiteitstheorie versie 1 september 2013 Speciale relativiteitstheorie J.W. van Holten NIKHEF Amsterdam en LION Universiteit Leiden c Hoofdstuk 1 Inleiding Natuurkunde is de wetenschap van de materie en haar wisselwerkingen.

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Sferische oplossingen: 10 november 2009 Ontsnappingssnelheid Mitchell (1787); Laplace (± 1800) Licht kan niet ontsnappen van een voldoend zwaar lichaam

Nadere informatie

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.

ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3. ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Voorbeeldtoetsen Lineaire Algebra Deliverable 3.10 Henk van der Kooij ONBETWIST Deliverable 3.8 ONBETWIST ONderwijs verbeteren met WISkunde Toetsen Inleiding

Nadere informatie

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016

Kwantummechanica HOVO cursus. Jo van den Brand Lecture 4: 13 oktober 2016 Kwantummechanica HOVO cursus Jo van den Brand Lecture 4: 13 oktober 2016 Copyright (C) VU University Amsterdam 2016 Overzicht Algemene informatie Jo van den Brand Email: jo@nikhef.nl 0620 539 484 / 020

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Joris van Heijningen Zwarte gaten: 17 November 2015 Copyright (C) Vrije Universiteit 2009 Inhoud Inleiding Overzicht Klassieke mechanica Galileo,

Nadere informatie

Relativiteit. N.G. Schultheiss

Relativiteit. N.G. Schultheiss 1 Relativiteit N.G. Shultheiss 1 Inleiding In deze module wordt er uitgelegd hoe een natuurkundige gebeurtenis door vershillende waarnemers wordt waargenomen. Iedere waarnemer heeft een eigen assenstelsel

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Relativistische kosmologie: 24 november 2014 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen Neutronensterren

Nadere informatie

Relativiteitstheorie. Wat zijn de eigenschappen van ruimte en tijd?

Relativiteitstheorie. Wat zijn de eigenschappen van ruimte en tijd? Relativiteitstheorie D. G.B.J. Dieks Wat zijn de eigenschappen van ruimte en tijd? In 1905 publiceerde Albert Einstein een artikel over `De elektrodynamica van bewegende lichamen'. De titel suggereert

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand & Jeroen Meidam Les 1: 3 september 2012 Overzicht Docent informatie Jo van den Brand, Jeroen Meidam Email: jo@nikhef.nl, j.meidam@nikhef.nl 0620 539

Nadere informatie

4 Wiskunde I - Dierentiaaltopologie

4 Wiskunde I - Dierentiaaltopologie 4 WISKUNDE I - DIFFERENTIAALTOPOLOGIE 59 4 Wiskunde I - Dierentiaaltopologie In een ruimte zijn een punt, scalair en een vector voorbeelden van topologische objecten. Als de scalair of vector kan variëren

Nadere informatie

Tentamen - uitwerkingen

Tentamen - uitwerkingen Tentamen - uitwerkingen Mechanica en Relativiteitstheorie voor TW 5 april 06 Kennisvragen - 0 punten a) Geef de drie behoudswetten van de klassieke mechanica, en geef voor elk van de drie aan onder welke

Nadere informatie

Voorwoord. door Gerard t Hooft

Voorwoord. door Gerard t Hooft Voorwoord door Gerard t Hooft Geen intellectuele held spreekt meer tot onze verbeelding dan Albert Einstein met zijn speciale en algemene relativiteitstheorie. Deze magistrale constructies van de menselijke

Nadere informatie

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl

Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Speciale rela*viteit Hoogtepunten uit de Speciale Rela2viteit theorie van Einstein Stan Bentvelsen s.bentvelsen@uva.nl Albert Einstein (1879 1955) Einstein s grensverleggende papers (1905): De speciale

Nadere informatie

Bewijzen en toegiften

Bewijzen en toegiften Bewijzen en toegiften 1 Het bewijs van Mermin voor het optellen van snelheden W op een perron ziet W in een treinwagon passeren met snelheid v. W schiet een kogel af met snelheid u en stuurt tegelijkertijd

Nadere informatie

Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers. 24 juni 2006. Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers

Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers. 24 juni 2006. Zwaartekrachtsgolven. Johan Konter, Niels Pannevis, Sander Kupers 24 juni 2006 Inleiding 1805 Laplace 1916 Einstein 1950 Bondi 1993 Nobelprijs: Hulse & Taylor voor meten aan PSR 1916+13. Figuur: De golvende ruimte Concept van Ruimtetijd gebogen door massa Eindige lichtsnelheid

Nadere informatie

experimenteren met Zwarte Gaten Eigenschappen van Zwarte Gaten tot nu HOVO2016, Utrecht 15 Juli 2016 Speciale RelativiteitsTheorie

experimenteren met Zwarte Gaten Eigenschappen van Zwarte Gaten tot nu HOVO2016, Utrecht 15 Juli 2016 Speciale RelativiteitsTheorie experimenteren met Zwarte Gaten II Zwarte Gaten en de Algemene RelativiteitsTheorie Eigenschappen van Zwarte Gaten tot nu massa-concentratie, gekenmerkt vanaf afstand door een horizon waar ontsnappingsnelheid

Nadere informatie

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde

Analytische Meetkunde. Lieve Houwaer, Unit informatie, team wiskunde Analytische Meetkunde Lieve Houwaer, Unit informatie, team wiskunde . VECTOREN EN RECHTEN.. Vectoren... Het vectorbegrip De verzameling punten van het vlak noteren we door π. Kies in het vlak π een vast

Nadere informatie

Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. Een korte inleiding:

Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. Een korte inleiding: 1 Ruimte, Ether, Lichtsnelheid en de Speciale Relativiteitstheorie. 23-09-2015 -------------------------------------------- ( j.eitjes@upcmail.nl) Een korte inleiding: Is Ruimte zoiets als Leegte, een

Nadere informatie

Lineaire Algebra Een Samenvatting

Lineaire Algebra Een Samenvatting Lineaire Algebra Een Samenvatting Definitie: Een (reële) vectorruimte is een verzameling V voorzien van een additieve en multiplicatieve operatie, zodat (a) u V en v V u + v V, (1) u + v = v + u voor alle

Nadere informatie

Tentamen: Gravitatie en kosmologie

Tentamen: Gravitatie en kosmologie 1 Tentamen: Gravitatie en kosmologie Docent: Jo van den Brand Datum uitreiken: 1 december 2011 Datum inleveren: 15 december 2011 (bij Marja of voor 17:00 in mijn postvak) Datum mondeling: 19-23 december

Nadere informatie

1 OPGAVE. 1. Stel dat we kansdichtheid ρ van het Klein-Gordon veld φ zouden definieren op de Schödingermanier

1 OPGAVE. 1. Stel dat we kansdichtheid ρ van het Klein-Gordon veld φ zouden definieren op de Schödingermanier OPGAVE. Opgave. Stel dat we kansdichtheid ρ van het Klein-Gordon veld φ zouden definieren op de Schödingermanier : ρ = φ φ, waarin φ de Klein-Gordonfunctie is. De stroom j van kansdichtheid wor in Schrödingers

Nadere informatie

Deeltjes en velden donderdag 3 oktober 2013 OPGAVEN WEEK 2

Deeltjes en velden donderdag 3 oktober 2013 OPGAVEN WEEK 2 Deeltjes en velden donderdag 3 oktober 203 OPGAVEN WEEK 2 Opgave : Causaliteit In het jaar 300 wordt door de Aardse Federatie een ruimteschip naar een Aardse observatiepost op de planeet P47 gestuurd.

Nadere informatie

Speciale Relativiteitstheorie

Speciale Relativiteitstheorie Speciale Relativiteitstheorie Prof. Dr J.J. Engelen NIKHEF/Onderzoekinstituut HEF met medewerking van Drs. B. Mooij, Dr E. de Wolf, Drs. A. Heijboer Inhoudsopgave 1 Inleiding 3 2 De Galileitransformatie

Nadere informatie

Vectormeetkunde in R 3

Vectormeetkunde in R 3 Vectormeetkunde in R Definitie. Een punt in R wordt gegeven door middel van drie coördinaten : P = (x, y, z). Een lijnstuk tussen twee punten P en Q voorzien van een richting noemen we een pijltje. Notatie

Nadere informatie

Maar het leidde ook tot een uitkomst die essentieel is in mijn werkstuk van een Stabiel Heelal.

Maar het leidde ook tot een uitkomst die essentieel is in mijn werkstuk van een Stabiel Heelal. -09-5 Bijlage voor Stabiel Heelal. --------------------------------------- In deze bijlage wordt onderzocht hoe in mijn visie materie, ruimte en energie zich tot elkaar verhouden. Op zichzelf was de fascinatie

Nadere informatie

Hawking Straling. Universiteit van Amsterdam. Begeleider: Prof. dr. Erik Verlinde. Auteur: Sam van Leuven,

Hawking Straling. Universiteit van Amsterdam. Begeleider: Prof. dr. Erik Verlinde. Auteur: Sam van Leuven, Universiteit van Amsterdam ITFA Bachelor project Hawking Straling Auteur: Sam van Leuven, 5756561 Begeleider: Prof. dr. Erik Verlinde Tweede Begeleider: Prof. dr. Kostas Skenderis 12 EC variant. Uitgevoerd

Nadere informatie

Henk meet: A. Coördinaattijd in het stelsel van de trein. B. Coördinaattijd in het stelsel van het perron. C. Eigentijd. D.

Henk meet: A. Coördinaattijd in het stelsel van de trein. B. Coördinaattijd in het stelsel van het perron. C. Eigentijd. D. Henk en Ingrid zitten in een trein die met constante snelheid een station passeert. Aan de uiteinden van het perron staan twee gesynchroniseerde stationsklokken. Bij passage van de klokken leest Henk de

Nadere informatie

Opgave 1 - Uitwerking

Opgave 1 - Uitwerking Opgave 1 - Uitwerking Om dit probleem op te lossen moeten we een zogenaamd stelsel van vergelijkingen oplossen. We zetten eerst even de tips van de begeleider onder elkaar: 1. De zak snoep weegt precies

Nadere informatie

1 Leerlingproject: Relativiteit 28 februari 2002

1 Leerlingproject: Relativiteit 28 februari 2002 1 Leerlingproject: Relativiteit 28 februari 2002 1 Relativiteit Als je aan relativiteit denkt, dan denk je waarschijnlijk als eerste aan Albert Einstein. En dat is dan ook de bedenker van de relativiteitstheorie.

Nadere informatie

Matrixalgebra (het rekenen met matrices)

Matrixalgebra (het rekenen met matrices) Matrixalgebra (het rek met matrices Definitie A a a n a a n a m a mn is e (m n-matrix Hierbij is m het aantal rij van A n het aantal kolomm (m n noemt m de afmeting( van de matrix A We noter vaak kortweg

Nadere informatie

7 College 01/12: Electrische velden, Wet van Gauss

7 College 01/12: Electrische velden, Wet van Gauss 7 College 01/12: Electrische velden, Wet van Gauss Berekening van electrische flux Alleen de component van het veld loodrecht op het oppervlak draagt bij aan de netto flux. We definieren de electrische

Nadere informatie

Gravitatie en kosmologie

Gravitatie en kosmologie Gravitatie en kosmologie FEW cursus Jo van den Brand Sferische oplossingen: 19 november 2012 Inhoud Inleiding Overzicht Klassieke mechanica Galileo, Newton Lagrange formalisme Quantumfenomenen Neutronensterren

Nadere informatie

Speciale Relativiteitstheorie

Speciale Relativiteitstheorie Faculteit der Natuurwetenschappen, Wiskunde en Informatica Speciale Relativiteitstheorie Prof S. Bentvelsen UvA / NIKHEF Onderzoeksinstituut Hoge Energie Fysica (IHEF) Speciale Relativiteitstheorie Prof

Nadere informatie

Geadjungeerde en normaliteit

Geadjungeerde en normaliteit Hoofdstuk 12 Geadjungeerde en normaliteit In het vorige hoofdstuk werd bewezen dat het voor het bestaan van een orthonormale basis bestaande uit eigenvectoren voldoende is dat T Hermites is (11.17) of

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Tweede Ronde

1 Vlaamse Wiskunde Olympiade : Tweede Ronde Vlaamse Wiskunde Olympiade 988-989: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

TRILLINGEN EN GOLVEN HANDOUT FOURIER

TRILLINGEN EN GOLVEN HANDOUT FOURIER TRILLINGEN EN GOLVEN HANDOUT FOURIER Cursusjaar 2009 / 2010 2 Inhoudsopgave 1 FOURIERANALYSE 5 1.1 INLEIDING............................... 5 1.2 FOURIERREEKSEN.......................... 5 1.3 CONSEQUENTIES

Nadere informatie

Dark Side of the Universe

Dark Side of the Universe Dark Side of the Universe Dark Matter, Dark Energy, and the Fate of the Cosmos Iain Nicolson 2007, John Hopkins What gets us into trouble is not what we don t know. It s what we know for sure that just

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.31 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds06 Technische Universiteit Eindhoven college 1 J.Keijsper

Nadere informatie

Relativiteitstheorie van Einstein: Differentiaal Meetkunde

Relativiteitstheorie van Einstein: Differentiaal Meetkunde Relativiteitstheorie van Einstein: Differentiaal Meetkunde Relativiteitstheorie van Einstein: Differentiaal Meetkunde... 1 1. Inleiding.... Meetkunde en gekromde oppervlakken....1 Gekromde oppervlakken

Nadere informatie

Oefeningen. Speciale Relativiteitstheorie

Oefeningen. Speciale Relativiteitstheorie Oefeningen bij het college Speciale Relativiteitstheorie Prof. Dr J.J. Engelen, Drs. B. Mooij, Dr. E. de Wolf NIKHEF /Onderzoeksinstituut HEF /UvA versie 1.3, januari 2003 2 Inhoudsopgave 1 Galileitransformatie

Nadere informatie

Vlakke meetkunde en geogebra

Vlakke meetkunde en geogebra Vlakke meetkunde en geogebra Open de geogebra-app. Kies het algebra- en tekenvenster. Aan de linkerkant zie je het algebravenster en rechts daarvan het tekenvenster met een x-as en een y-as. Om een rooster

Nadere informatie

Relativiteitstheorie VWO

Relativiteitstheorie VWO Inhoud... 2 Waarnemingen verrichten... 2 Relativiteitsprincipe van Galileo Galilei... 3 Het (tijd, plaats)-diagram... 4 Iedereen kijkt naar Bobs raket... 4 Het relativiteitsprincipe van Galilei en de snelheid

Nadere informatie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie

College WisCKI. Albert Visser. 16 januari, Department of Philosophy, Faculty Humanities, Utrecht University. Loodrechte Projectie College WisCKI Albert Visser Department of Philosophy, Faculty Humanities, Utrecht University 16 januari, 2012 1 Overview 2 Overview 2 Overview 2 Overview 3 Zij V een deelruimte met basis v 1,..., v k.

Nadere informatie

Docentencursus relativiteitstheorie

Docentencursus relativiteitstheorie Docentencursus relativiteitstheorie Opgaven bijeenkomst 2, "Rekenen en tekenen" 8 september 203 De opgaven die met een "L" zijn aangegeven, zijn op leerlingenniveau dit zijn dus opgaven die in de les of

Nadere informatie

Lineaire Algebra voor ST

Lineaire Algebra voor ST Lineaire Algebra voor ST docent: Judith Keijsper TUE, HG 9.3 email: J.C.M.Keijsper@tue.nl studiewijzer: http://www.win.tue.nl/wsk/onderwijs/2ds6 Technische Universiteit Eindhoven college 2 J.Keijsper (TUE)

Nadere informatie

Lineaire algebra 1 najaar Complexe getallen

Lineaire algebra 1 najaar Complexe getallen Lineaire algebra 1 najaar 2008 Complexe getallen Iedereen weet, dat kwadraten van getallen positieve getallen zijn. Dat is vaak erg praktisch, we weten bijvoorbeeld dat de functie f(x) := x 2 + 1 steeds

Nadere informatie

UITWERKINGEN 1 2 C : 2 =

UITWERKINGEN 1 2 C : 2 = UITWERKINGEN. De punten A, B, C, D in R zijn gegeven door: A : 0, B : Zij V het vlak door de punten A, B, C. C : D : (a) ( pt) Bepaal het oppervlak van de driehoek met hoekpunten A, B, C. Oplossing: De

Nadere informatie

Algemene relativiteitstheorie

Algemene relativiteitstheorie Algemene relativiteitstheorie HOVO cursus Jo van den Brand Les 5: 26 november 2015 Copyright (C) Vrije Universiteit 2015 Inhoud Speciale relativiteitstheorie Inertiaalsystemen Bewegende waarnemers Relativiteitsprincipe

Nadere informatie

Voorkennis wiskunde voor Biologie, Chemie, Geografie

Voorkennis wiskunde voor Biologie, Chemie, Geografie Onderstaand overzicht volgt de structuur van het boek Wiskundige basisvaardigheden met bijhorende website. Per hoofdstuk wordt de strikt noodzakelijke voorkennis opgelijst: dit is leerstof die gekend wordt

Nadere informatie

De ruimte in de loop van de tijd

De ruimte in de loop van de tijd De ruimte in de loop van de tijd Gert Vegter Instituut voor Wiskunde en Informatica (RUG) G.Vegter@rug.nl www.math.rug.nl/~gert HOVO, 17 maart 2009 GV () De ruimte in de loop van de tijd HOVO, 17/03/2009

Nadere informatie

Uitdijing van het heelal

Uitdijing van het heelal Uitdijing van het heelal Zijn we centrum van de expansie? Nee Alles beweegt weg van al de rest: Alle afstanden worden groter met zelfde factor a(t) a 4 2 4a 2a H Uitdijing van het heelal (da/dt) 2 0 a(t)

Nadere informatie

Thermodynamica rol in de moderne fysica Jo van den Brand HOVO: 4 december 2014

Thermodynamica rol in de moderne fysica Jo van den Brand HOVO: 4 december 2014 Thermodynamica rol in de moderne fysica Jo van den Brand HOVO: 4 december 2014 jo@nikhef.nl Kosmologie Algemene relativiteitstheorie Kosmologie en Big Bang Roodverschuiving Thermodynamica Fase-overgangen

Nadere informatie

Bernardinuscollege Scienceklas 6 VWO. Inleiding in de Relativiteitstheorie

Bernardinuscollege Scienceklas 6 VWO. Inleiding in de Relativiteitstheorie Bernardinuscollege Scienceklas 6 VWO Inleiding in de Relativiteitstheorie J.L.M. Jansen, sept-okt 2006 Inhoudsopgave Voorwoord.. blz 3 Inleiding. blz 5 1. De Klassieke Natuurkunde (= natuurkunde tot 1900)..

Nadere informatie

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is.

Opgave 1 Bekijk de Uitleg, pagina 1. Bekijk wat een vectorvoorstelling van een lijn is. 3 Lijnen en hoeken Verkennen Lijnen en hoeken Inleiding Verkennen Bekijk de applet en zie hoe de plaatsvector v ur van elk punt A op de lijn kan ur r ontstaan als som van twee vectoren: p + t r. Beantwoord

Nadere informatie

Een Nieuwe Wereld uit het Niets

Een Nieuwe Wereld uit het Niets Een Nieuwe Wereld uit het Niets Gert Vegter Instituut voor Wiskunde en Informatica (RUG) G.Vegter@math.rug.nl www.math.rug.nl/~gert Masterclass, 16 april 2009 GV () Werelden uit het niets Masterclass,

Nadere informatie

Stevin vwo Uitwerkingen Speciale relativiteitstheorie ( ) Pagina 1 van 8

Stevin vwo Uitwerkingen Speciale relativiteitstheorie ( ) Pagina 1 van 8 Stevin vwo Uitwerkingen Speiale relativiteitstheorie (14-09-015) Pagina 1 van 8 Opgaven 1 Het is maar hoe je het ekijkt 1 a Een inertiaalsysteem is een omgeving waarin de eerste wet van Newton geldt. a

Nadere informatie

MODULE GLIESE 667 RELATIVITEIT GLIESE 667. Naam: Klas: Datum:

MODULE GLIESE 667 RELATIVITEIT GLIESE 667. Naam: Klas: Datum: GLIESE 667 RELATIVITEIT GLIESE 667 Naam: Klas: Datum: GLIESE 667 GLIESE 667 WE GAAN OP REIS De invloed van de mensheid reikt steeds verder. In de oertijd kon een mens zich maar enkele kilometers van zijn

Nadere informatie

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi

Meetkunde. Trainingsweekend 23 25 januari 2009. 1 Gerichte hoeken. gerichte hoeken, driehoeksongelijkheid, Ravi Meetkunde gerichte hoeken, driehoeksongelijkheid, Ravi Trainingsweekend 23 25 januari 2009 Als je een meetkundig probleem aan het oplossen bent, stuit je vaak op verschillende oplossingen voor de verschillende

Nadere informatie