6 Ringen, lichamen, velden

Maat: px
Weergave met pagina beginnen:

Download "6 Ringen, lichamen, velden"

Transcriptie

1 6 Ringen, lichamen, velden 6.1 Polynomen over F p : irreducibiliteit en factorisatie Oefening 6.1. Bewijs dat x 2 + 2x + 2 irreducibel is in Z 3 [x]. Oefening 6.2. Ontbind x 5 + x 4 + x 3 + x in irreducibele factoren over Z 2. Oefening 6.3. Ontbind x 8 1 in irreducibele factoren in Z 3 [x]. Oefening 6.4. Ontbind x 3 + 5x in Z 11 [x]. Oefening 6.5. Factoriseer volgende veeltermen in irreducibele veeltermen over F 5. a. x b. x 4 + 3x 3 + 2x + 4 Oefening 6.6. Wat is de multipliciteit van de wortel 1 van x 8 + x 7 + x 6 + x 3 + x in Z 2 [x]? 6.2 Deling, Euclides en modulaire inversen Oefening 6.7. Bepaal het quotiënt en de rest van de deling van a(x) door b(x) over het veld F. a. F = F 5 ; a(x) = 3x 4 + 4x 3 x 2 + 1; b(x) = 2x 2 + x + 1. b. F = F 8 met α 3 + α + 1 = 0; a(x) = x 4 + α 2 x 3 + α 6 x 2 + αx + α 5 ; b(x) = α 4 x 2 + α 3 x + 1. c. F = F 2 ; a(x) = x 3 + x 2 + 1; b(x) = x 2 + x + 1. d. F = F 5 ; a(x) = x 5 + x 4 + 2x 3 + x 2 + 4x + 2, b(x) = x 2 + 2x + 3. e. Zelfde als d. maar nu over F 7. f. Zelfde als d. maar nu over F 73. Oefening 6.8. Vind de monische grootste gemene deler van de polynomen a(x) en b(x) in F[x] en schrijf het eindresultaat in de gedaante λ(x)a(x) + µ(x)b(x) over F[x]. Oefeningen Relaties en Structuren, hoofdstuk 6 20

2 a. F = F 3 ; a(x) = x 3 + x 2 + x + 1; b(x) = x b. F = F 5 ; a(x) = x 4 + 2x 3 + x 2 + 4x + 2; b(x) = x 2 + 3x + 1. c. F = F 2 ; a(x) = x 4 + 1; b(x) = x d. F = F 2 ; a(x) = x 5 + 1; b(x) = x e. F = F 2 ; a(x) = x 9 + 1; b(x) = x Oefening 6.9. Bepaal in de volgende gevallen de veeltermen λ(x) en µ(x) zodanig dat ggd(a(x), b(x)) = λ(x)a(x) + µ(x)b(x). a. a(x) = x en b(x) = 5x 2 + 6x + 4 in Z 7 [x]. b. a(x) = x 3 + 2x 2 + 2x + 1 en b(x) = 2x in Z 3 [x]. c. a(x) = x en b(x) = x + 1 in Z 2 [x]. Oefening Bepaal in F 3 [x] de inverse veelterm van 2x modulo x Oefening a. Waarom is x irreducibel over F 5? b. Zoek de inverse veelterm van x + 1 modulo x in F 5. Oefening a. Bereken de som en het product in Z[x] van 3x + 4 en 5x 2 modulo x 2 7. b. Bereken de som en het product van 3x x2 2 en 2 modulo x in Q[x]. 6.3 Constructie van eindige velden Oefening a. Toon aan dat f(t) = t 2 + t 1 over Z 3 een irreducibel polynoom is. b. Bewijs dat f(t) = t 2 + t 1 een primitief polynoom is in Z 3 [t]. c. Stel de Zech-log-tabel op voor F 9 met de keuze van dit primitief polynoom. d. Bereken volgende elementen van F 9 : (1 t)( 1 + t) t 4 + t 7 t 2 4t 3 + 5t 5 7t 7 Oefening a. Is x 4 + x een primitieve, irreducibele veelterm in Z 2? Oefeningen Relaties en Structuren, hoofdstuk 6 21

3 b. Is x 4 + x + 1 een primitieve, irreducibele veelterm in Z 2? Oefening Onderzoek of de gegeven veelterm een irreducibele veelterm is over het gepaste veld en stel de Zech-log-tabel op voor het gevraagde veld. Als het gegeven polynoom niet primitief is, zal je in plaats van de de variabele t dus een ander element α moeten kiezen dan als primitief element. a. F 4, met f(t) = t 2 + t + 1. b. F 9, met f(t) = t c. F 16, met f(t) = t 4 + t + 1. d. F 25, met f(t) = t 2 + 4t + 2. Oefening Gebruik de Zech-log-tabellen uit oefening 6.15 om de volgende kwadratische vergelijkingen op te lossen: a. αx 2 + α 2 = 0 over F 4. b. x 2 + α 7 x + α 2 = 0 over F 9. c. x 2 + α 7 x + 1 = 0 over F 16. d. x 2 + α 13 x + α 14 = 0 over F 25. Oefening Los de volgende kwadratische vergelijkingen op over F 8 waarbij t 3 +t+1 = 0. a. tx 2 + (t 2 + t + 1)x + t 2 + t = 0. b. (1 + t + t 2 )x 2 + t 2 x + t + 1 = Primitieve elementen Oefening Hoeveel primitieve elementen heeft een eindig veld van orde 64? Oefening Zoek de primitieve elementen van Z 41. Oefening Vergelijk de ringen Z 16 en F 16. Beantwoord daarvoor voor beide: a. Hoe ziet de additieve groep van beide eruit? b. Hoeveel elementen heeft de multiplicatieve groep (of meer correct, de multiplicatieve groep van inverteerbare elementen)? c. Hoeveel primitieve elementen zijn er? d. Lijst alle inverteerbare elementen met hun ordes op. Oefeningen Relaties en Structuren, hoofdstuk 6 22

4 6.5 Doordenkers in eindige velden Oefening Bewijs dat alle elementen van F 2 11 derdemachten zijn. Oefening 6.22 (Examen 2012). Bewijs: als ggd(k, q 1) = 1, dan is elk element in F q een k-de macht. Oefening a. Welk irreducibel polynoom met coëfficiënten in F 2 heeft precies alle elementen van orde drie van F 16 als nulpunten? b. Welk irreducibel polynoom met coëfficiënten in F 2 heeft precies alle elementen van orde vijf van F 16 als nulpunten? c. Welk irreducibel polynoom met coëfficiënten in F p heeft precies alle elementen van orde d van F p h als nulpunten, waarbij d een deler is van p h 1? Oefening Welke polynoom is een deler van x 15 1 en heeft precies alle primitieve elementen van F 16 als nulpunt? Oefening a. Hoeveel koppels (a, b) F 8 F 8 zijn er met a 2 b 2 = 1? b. Hoeveel koppels (a, b) F 9 F 9 zijn er met a 2 b 2 = 1? c. Hoeveel koppels (a, b) F 16 F 16 zijn er met a 2 + b 3 = 1? Oefening Bewijs dat x 16 + x 4 + x + 1 precies 16 verschillende wortels heeft over F 64. Hint: beschouw de afbeelding f : F 64 F 64, x x 16 +x 4 +x+1 en vooral diens beeld. Oefening Noem α een primitief element van F 9, en noem f(x) een irreducibele veelterm van Z 3 [x] zodanig dat f(α 2 ) = 0. Bepaal f(x). Oefeningen Relaties en Structuren, hoofdstuk 6 23

5 7 Telprincipes 7.1 Dubbele telling Probeer alle oefeningen op te lossen door het principe van dubbele telling toe te passen. Geef eerst een beschrijving van de koppels die je telt: (x, y) a. Beschrijving van x b. Beschrijving van y c. Welke relatie bestaat er tussen x en y? Tel dan het aantal koppels op twee manieren om de gezochte informatie te vinden. Oefening 7.1. Veronderstel dat we een aantal verschillende deelverzamelingen van N[1, 8] beschouwen zodanig dat elke deelverzameling 4 elementen bevat en dat elk element van N[1, 8] tot 3 dergelijke deelverzamelingen behoort. Hoeveel dergelijke deelverzamelingen zijn er dan? Oefening 7.2. Is het mogelijk om een verzameling van deelverzamelingen van N[1, 8] te vinden zodanig dat elke deelverzameling 3 elementen bevat, en zodanig dat elk element van N[1, 8] tot 5 deelverzamelingen behoort? Oefening 7.3. Indien X 1, X 2, X 3,..., X n verzamelingen zijn (eventueel gelijk), dan wordt X 1 X 2 X n = {(x 1, x 2,..., x n ) x i X i } de productverzameling van X 1, X 2,..., X n genoemd. Bewijs door middel van het inductieprincipe dat X 1 X 2 X n = X 1 X 2... X n. Oefening 7.4. Beschouw volgende definitie: de hoekpunten van een ruimtefiguur zijn de geordende drietallen (a 1, a 2, a 3 ) waarbij a 1, a 2, a 3 {0, 1}. Twee hoekpunten worden verbonden door een ribbe als ze slechts in één positie een verschillend element hebben. Bijvoorbeeld (0, 0, 0) wordt verbonden met (0, 0, 1) maar niet met (1, 1, 0). a. Hoeveel hoekpunten heeft deze figuur? b. Heeft deze figuur driehoeken? c. Heeft deze figuur vierhoeken? Oefeningen Relaties en Structuren, hoofdstuk 7 24

6 d. Tot hoeveel ribben behoort elk hoekpunt? e. Bepaal hoeveel ribben deze figuur heeft aan de hand van een dubbele telling. f. Bepaal hoeveel vierhoeken deze figuur heeft aan de hand van een dubbele telling. g. Welk ruimtelichaam stelt deze figuur voor? Oefening 7.5. Op een grootouderfeest op een lagere school komen voor elk kind gemiddeld 2 grootouders kijken. Elke grootouder heeft gemiddeld drie kleinkinderen op deze school. Hoeveel kinderen zitten op deze school als er 66 grootouders naar het feest komen? Oefening 7.6. In de minor wiskunde zijn er zeven vakken waarvan elke student er exact vier moet volgen. (Ga uit van een ideale wereld zonder GIT.) De administratie laat weten dat er in deze lessen respectievelijk 10, 5, 6, 8, 13, 17 en 8 studenten ingeschreven zijn. Bewijs dat de administratie fout is. Na hervragen blijkt dat er in de vakken 10, 5, 6, 8, 13, 17 en 5 studenten ingeschreven zijn. Bewijs dat de administratie nog steeds fout is. Oefening 7.7. Gent wil een autodeelsysteem opstarten. Elk deelnemend gezin moet kunnen kiezen uit 3 verschillende auto s. Er zijn 48 gezinnen ge nteresseerd en er zijn 18 wagens beschikbaar. Wat kan je nu bepalen? Oefening 7.8. Hoeveel diagonalen heeft een n-hoek? Oefening 7.9. Een tuinaanlegger wil 10 bomen op een originele manier planten. Hij wil 5 rijen van vier bomen bekomen. Hoe kan hij dat doen? Oefening Een school besluit een voetbalcompetitie op te starten. Elke ploeg moet tegen elke andere ploeg spelen. Leerlingen moeten een vast duo vormen en samen moeten ze in drie ploegen meespelen (waarbij er telkens één van de twee meespeelt). Er zijn 36 wedstrijden gepland. Hoeveel leerlingen nemen deel aan deze competitie? Oefening Een geheime sekte heeft een zeer speciaal gebouw gemaakt. Elke kamer Oefeningen Relaties en Structuren, hoofdstuk 7 25

7 is toegankelijk door juist drie deuren, waarbij er ook juist drie deuren naar buiten toe gebruikt worden. Er zijn juist 15 kamers. De sekte heeft speciale sleutels laten maken zodat voor elke twee deuren er precies één sleutel is die op beide deuren past maar op geen enkele andere. Elke sleutel hangt buiten in een kastje dat op zijn beurt ook op slot is. Van elk kastje zijn er drie sleuteltjes gemaakt. Elk sektelid heft een sleutelbos met 12 sleuteltjes van een kastje. Hoeveel sekteleden telt deze sekte? 7.2 Binomium van Newton Oefening Bewijs het binomium van Newton door gebruik te maken van inductie. Oefening Bewijs de volgende formules: n ( ) n k k=0 n ( ) n ( 1) k k k=0 = 2 n = 0 Oefening Bewijs de volgende formule ( ) n ( ) n ( ) n 2 ( ) n n 1 ( ) n 2 = n ( ) 2n. n Oefening Bewijs dat het binomiaalgetal ( p k) met p een priemgetal, deelbaar is door p voor alle waarden van k, 1 k p 1. Leid hieruit af dat (a+b) p a p b p steeds deelbaar is door p voor elke 2 gehele getallen a en b. 7.3 Variaties en combinaties Oefening Op hoeveel manieren kan je 12 mensen aan 2 ronde tafels voor 6 personen zetten? We beschouwen twee schikkingen als dezelfde als je de ene kan bekomen uit de andere door de tafels rond te draaien. Merk op dat we de tafels niet nummeren, dus een tafelschikking bekomen uit een andere door de twee tafels om te wisselen als geheel, beschouwen we ook als equivalent. Oefeningen Relaties en Structuren, hoofdstuk 7 26

8 Oefening Constantijn heeft tien ballen. Hij splitst deze in twee hopen. Dan neemt hij een hoop die uit minstens twee elementen bestaat en splitst deze op in twee hopen, zo verdergaand tot alle ballen afzonderlijk liggen. Op hoeveel manieren kan hij dit doen? Oefening a. Op hoeveel manieren kan je drie verschillende personen aan een tafel met twintig stoelen zetten, waarbij er geen twee naast elkaar zitten? b. Als er al twintig personen rond diezelfde tafel zitten, op hoeveel manieren kan je dan drie mensen kiezen waarvan er geen twee naast elkaar zitten? Oefening Beschouw een verzameling A met n elementen. a. Hoeveel relaties zijn er over A? b. Hoeveel reflexieve relaties zijn er over A? c. Hoeveel antireflexieve relaties zijn er over A? d. Hoeveel relaties over A zijn reflexief en symmetrisch? e. Hoeveel symmetrische relaties zijn er over A? f. Hoeveel antisymmetrische relaties zijn er over A? g. Hoeveel relaties over A zijn noch symmetrisch, noch antisymmetrisch? Oefening a. Als A 64 deelverzamelingen heeft, wat is dan A? b. Als B 64 deelverzamelingen van oneven kardinaliteit heeft, wat is dan B? Oefening Beschouw drie verzamelingen A, B en C waarvoor B = 3. Bepaal A als er 4096 relaties zijn van A naar B. Bepaal C als er 2187 afbeeldingen zijn van C naar B. Oefening Beschouw A N[1, 14], met A = 6. Toon aan dat de mogelijke sommen van elementen uit deelverzamelingen van A niet allemaal verschillend kunnen zijn. Oefening Op hoeveel manieren kan je 24 mensen aan 4 ronde tafels van 6 personen plaatsen? Oefeningen Relaties en Structuren, hoofdstuk 7 27

9 Oefening Op de busticketjes in Servië staan de cijfers van 1 tot en met 9, zoals ze op een telefoon zijn afgebeeld (zie het eerste ticket op de figuur). Bij het opstappen moet je de ticketjes in een ontwaarder steken. Deze perforeert mechanisch enkele gaatjes op de plaatsen van de cijfers. Je bekomt dus een getal met hoogstens 9 cijfers waarvan de cijfers van klein naar groot gerangschikt zijn. Het tweede ticket bijvoorbeeld kan je voorstellen door 125 (of zo je wil duaal door ). Figuur 1: Bustickets uit Belgrado, Servië. a. Hoeveel verschillende manieren zijn er om drie gaatjes in deze kaartjes te knippen, waarbij er geen drie opeenvolgende cijfers uitgeknipt worden? b. Hoeveel verschillende manieren zijn er om drie gaatjes in deze kaartjes te knippen, zodat er twee gaatjes naast elkaar liggen, maar de drie gaatjes niet op één rij liggen? (Merk op dat naast elkaar liggen betekent dat de desbetreffende vierkantjes een zijde gemeenschappelijk moeten hebben. Zo liggen 1 en 4 naast elkaar en 3 en 5 niet.) Op de figuur voldoet het tweede, vierde, vijfde en zesde ticket aan Oefeningen Relaties en Structuren, hoofdstuk 7 28

10 deze voorwaarde. Oefening 7.25 (Ingangsexamen geneeskunde-tandheelkunde). Op hoeveel manieren kunnen we 5 rode ballen en 3 witte ballen verdelen over 3 personen als de eerste persoon niet meer dan 5 ballen krijgt maar wel zeker 2 rode en 1 witte bal krijgt, de tweede persoon zeker 1 rode en 1 witte bal en de derde persoon zeker 1 rode bal. 7.4 De Stirlinggetallen Oefening Bewijs de volgende identiteiten voor de Stirlinggetallen. a. S(n, 2) = 2 n 1 1 b. S(n, n 1) = ( ) n 2 Oefening Beschouw A = N[1, 6]. Hoeveel relaties in A zijn equivalentierelaties? Oefening Beschouw 2 verzamelingen A en B met respectievelijk m en n elementen, waarbij m n. Hoeveel surjecties zijn er van A op B? 7.5 De multinomiaalgetallen Oefening Hoeveel strings van 11 letters kunnen we maken met de letters uit het woord MISSISSIPPI? Oefening Indien a + b + c = n, bewijs dan dat ( ) ( ) ( n n 1 n 1 = + a, b, c a 1, b, c a, b 1, c ) ( ) n 1 +. a, b, c 1 Van welke identiteit van binomiaalgetallen is dit een veralgemening? Oefening Veronderstel dat p een priemgetal is. Bewijs dat het multinomiaalgetal ( p n 1, n 2,..., n k ) deelbaar is door p, tenzij één van de getallen n i gelijk is aan p. Oefeningen Relaties en Structuren, hoofdstuk 7 29

11 Oefening Bewijs dat S(n, k) = 1 k! ( n n 1, n 2,..., n k waarbij de som genomen wordt over alle mogelijke k-tallen (n 1, n 2,..., n k ) van positieve natuurlijke getallen zodanig dat hun som n is. Oefening Op hoeveel manieren kan men mn voorwerpen verdelen over m dozen zodanig dat elke doos juist n elementen bevat? Oefening Bewijs door gebruik te maken van de multinomiaalgetallen, dat a. 2 n een deler is van (2n)! en dat het quotient even is als n 2. b. (n!) 2n+1 een deler is van (n 2!)!. ) Oefeningen Relaties en Structuren, hoofdstuk 7 30

Combinatoriek. Oefeningen op hoofdstuk 3. 3.1 Het duivenhokprincipe. 3.2 Dubbele telling

Combinatoriek. Oefeningen op hoofdstuk 3. 3.1 Het duivenhokprincipe. 3.2 Dubbele telling Oefeningen op hoofdstuk 3 Combinatoriek 3.1 Het duivenhokprincipe Oefening 3.1. Geraldine heeft twaalf roze kousen, zes appelblauwzeegroene en tien gele allemaal door elkaar in haar lade. Het is pikdonker

Nadere informatie

5.2.4 Varia in groepentheorie

5.2.4 Varia in groepentheorie Oefeningen op hoofdstuk 5 Algebra 5.2 Groepentheorie 5.2.1 Cayleytabellen van groepen van orde 8 Oefening 5.1. Stel de Cayleytabel op voor de groep van de symmetrieën van een vierkant. Bewijs dat deze

Nadere informatie

Algebra. Oefeningen op hoofdstuk Groepentheorie Cayleytabellen van groepen van orde Cyclische groepen

Algebra. Oefeningen op hoofdstuk Groepentheorie Cayleytabellen van groepen van orde Cyclische groepen Oefeningen op hoofdstuk 5 Algebra 5.2 Groepentheorie 5.2.1 Cayleytabellen van groepen van orde 8 Oefening 5.1. Stel de Cayleytabel op voor de groep van de symmetrieën van een vierkant. Bewijs dat deze

Nadere informatie

6 Ringen, lichamen, velden

6 Ringen, lichamen, velden 6 Ringen, lichamen, velden 6.1 Polynomen over F p : irreducibiliteit en factorisatie Oefening 6.1. Bewijs dat x 2 + 2x + 2 irreducibel is in Z 3 [x]. Oplossing 6.1 Aangezien de veelterm van graad 3 is,

Nadere informatie

6 Ringen, lichamen, velden

6 Ringen, lichamen, velden 6 Ringen, lichamen, velden 6.1 Polynomen over F p : irreducibiliteit en factorisatie Oefening 6.1. Bewijs dat x + x + irreducibel is in Z 3 [x]. Oplossing 6.1 Aangezien de veelterm van graad 3 is, is deze

Nadere informatie

Universiteit Gent. Academiejaar Discrete Wiskunde. 1ste kandidatuur Informatica. Collegenota s. Prof. Dr.

Universiteit Gent. Academiejaar Discrete Wiskunde. 1ste kandidatuur Informatica. Collegenota s. Prof. Dr. Universiteit Gent Academiejaar 2001 2002 Discrete Wiskunde 1ste kandidatuur Informatica Collegenota s Prof. Dr. Frank De Clerck Herhalingsoefeningen 1. Bepaal het quotiënt en de rest van de deling van

Nadere informatie

Men kan enkele samenstellingen berekenen en vervolgens de Cayleytabel aanvullen, wetende dat het een Latijns vierkant is. De Cayleytabel wordt:

Men kan enkele samenstellingen berekenen en vervolgens de Cayleytabel aanvullen, wetende dat het een Latijns vierkant is. De Cayleytabel wordt: Oefeningen op hoofdstuk 5 Algebra 5.2 Groepentheorie 5.2.1 Cayleytabellen van groepen van orde 8 Oefening 5.1. Stel de Cayleytabel op voor de groep van de symmetrieën van een vierkant. Bewijs dat deze

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 = 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht.

Oefening 4.3. Zoek een positief natuurlijk getal zodanig dat de helft een kwadraat is, een derde is een derdemacht en een vijfde is een vijfdemacht. 4 Modulair rekenen Oefening 4.1. Merk op dat 2 5 9 2 2592. Bestaat er een ander getal van de vorm 25ab dat gelijk is aan 2 5 a b? (Met 25ab bedoelen we een getal waarvan a het cijfer voor de tientallen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 986 987: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij of zij

Nadere informatie

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur

Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Deeltentamen I, Ringen en Galoistheorie, 16-4-2009, 9-12 uur Geef een goede onderbouwing van je antwoorden. Succes! 1. (a) (10 pt) Ontbindt het polynoom X 3 3X+3 in irreducibele factoren in Q[X] en in

Nadere informatie

Oefeningen Cursus Discrete Wiskunde. 26 mei 2003

Oefeningen Cursus Discrete Wiskunde. 26 mei 2003 Oefeningen Cursus Discrete Wiskunde 26 mei 2003 1 Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging Oefening 1.1.1 Zoals gebruikelijk noteren wij

Nadere informatie

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s.

2 n 1. OPGAVEN 1 Hoeveel cijfers heeft het grootste bekende Mersenne-priemgetal? Met dit getal vult men 320 krantenpagina s. Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal is een natuurlijk getal groter dan 1 dat slechts deelbaar is door 1 en door zichzelf. Om technische redenen wordt

Nadere informatie

Oefening 2.2. Welke van de volgende beweringen zijn waar?

Oefening 2.2. Welke van de volgende beweringen zijn waar? Oefeningen op hoofdstuk 2 Verzamelingenleer 2.1 Verzamelingen Oefening 2.1. Beschouw A = {1, {1}, {2}}. Welke van de volgende beweringen zijn waar? Beschouw nu A = {1, 2, {2}}, zelfde vraag. a. 1 A c.

Nadere informatie

7.1 Het aantal inverteerbare restklassen

7.1 Het aantal inverteerbare restklassen Hoofdstuk 7 Congruenties in actie 7.1 Het aantal inverteerbare restklassen We pakken hier de vraag op waarmee we in het vorige hoofdstuk geëindigd zijn, namelijk hoeveel inverteerbare restklassen modulo

Nadere informatie

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte

Getallenleer Inleiding op codeertheorie. Cursus voor de vrije ruimte Getallenleer Inleiding op codeertheorie Liliane Van Maldeghem Hendrik Van Maldeghem Cursus voor de vrije ruimte 2 Hoofdstuk 1 Getallenleer 1.1 Priemgetallen 1.1.1 Definitie en eigenschappen Een priemgetal

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. 1 Vlaamse Wiskunde Olympiade 1998-1999: Eerste ronde De eerste ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Hoofdstuk 1. Inleiding. Het binomiaalgetal ( n

Hoofdstuk 1. Inleiding. Het binomiaalgetal ( n Hoofdstuk 1 Inleiding Het binomiaalgetal ( n berekent het aantal -combinaties van n elementen; dit is het aantal mogelijkheden om elementen te nemen uit n beschikbare elementen Hierbij is herhaling niet

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde.

1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 1996 1997: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten Per goed antwoord krijgt hij

Nadere informatie

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies.

In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. 03 college 5: meer technieken In dit college bekijken we een aantal technieken om integralen te bepalen van trigonometrische functies en van rationale functies. Opmerking over de notatie. Net als in het

Nadere informatie

We beginnen met de eigenschappen van de gehele getallen.

We beginnen met de eigenschappen van de gehele getallen. II.2 Gehele getallen We beginnen met de eigenschappen van de gehele getallen. Axioma s voor Z De gegevens zijn: (a) een verzameling Z; (b) elementen 0 en 1 in Z; (c) een afbeelding +: Z Z Z, de optelling;

Nadere informatie

Opgeloste en onopgeloste mysteries in de getaltheorie

Opgeloste en onopgeloste mysteries in de getaltheorie Opgeloste en onopgeloste mysteries in de getaltheorie Jan De Beule, Tom De Medts en Jeroen Demeyer Voorwoord 1 Voorwoord Beste leerling, Deze nota s zijn bedoeld als begeleiding bij 6 lesuren Opgeloste

Nadere informatie

Getallensystemen, verzamelingen en relaties

Getallensystemen, verzamelingen en relaties Hoofdstuk 1 Getallensystemen, verzamelingen en relaties 1.1 Getallensystemen 1.1.1 De natuurlijke getallen N = {0, 1, 2, 3,...} N 0 = {1, 2, 3,...} 1.1.2 De gehele getallen Z = {..., 4, 3, 2, 1, 0, 1,

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 990-99: Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt: een deelnemer start met 0 punten Per

Nadere informatie

Grafieken van veeltermfuncties

Grafieken van veeltermfuncties (HOOFDSTUK 43, uit College Mathematics, door Frank Ayres, Jr. and Philip A. Schmidt, Schaum s Series, McGraw-Hill, New York; dit is de voorbereiding voor een uit te geven Nederlandse vertaling). Grafieken

Nadere informatie

Toelichting op de werkwijzer

Toelichting op de werkwijzer Toelichting op de werkwijzer NEDERLANDSE W I S K U N D E OLYMPIADE Birgit van Dalen, Quintijn Puite De opgaven voor de training komen uit het boekje De Nederlandse Wiskunde Olympiade 100 opgaven met hints,

Nadere informatie

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011)

Zomercursus Wiskunde. Module 1 Algebraïsch rekenen (versie 22 augustus 2011) Katholieke Universiteit Leuven September 011 Module 1 Algebraïsch rekenen (versie augustus 011) Inhoudsopgave 1 Rekenen met haakjes 1.1 Uitwerken van haakjes en ontbinden in factoren............. 1. De

Nadere informatie

Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe

Hoofdstuk 1. Getallen tellen. 1.1 Gehele getallen. 1.2 Recursieve definities. 1.3 Het induktieprincipe Hoofdstuk 1 Getallen tellen 1.1 Gehele getallen 1.1.1 Inleiding 1.1.2 De optelling en de vermeningvuldiging 1.1.3 De ordening van de gehele getallen 1.1.4 Het axioma van de goede ordening 1.2 Recursieve

Nadere informatie

II.3 Equivalentierelaties en quotiënten

II.3 Equivalentierelaties en quotiënten II.3 Equivalentierelaties en quotiënten Een belangrijk begrip in de wiskunde is het begrip relatie. Een relatie op een verzameling is een verband tussen twee elementen uit die verzameling waarbij de volgorde

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002

Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 Opgaven Getaltheorie en Cryptografie (deel 4) Inleverdatum: 13 mei 2002 19.a) Laat zien dat 5 een voortbrenger is van F 37. b) In het sleuteldistributiesysteem van Diffie en Hellman (met G = F 37, α =

Nadere informatie

Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat:

Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat: Hoofdstuk 1 Eerste begrippen 1.1 Wat is een groep? Definitie 1.1. Een groep is een verzameling G, uitgerust met een bewerking waarvoor geldt dat: 1. a, b G : a b G 2. a, b, c G : a (b c) = (a b) c = a

Nadere informatie

Complexe getallen: oefeningen

Complexe getallen: oefeningen Complexe getallen: oefeningen Hoofdstuk 2 Praktisch rekenen met complexe getallen 2.1 Optelling en aftrekking (modeloplossing) 1. Gegeven zijn de complexe getallen z 1 = 2 + i en z 2 = 2 3i. Bereken de

Nadere informatie

Inhoudsopgave. I Theorie 1

Inhoudsopgave. I Theorie 1 Inhoudsopgave I Theorie 1 1 Verzamelingen 3 1.1 Inleiding........................................ 3 1.2 Bewerkingen met verzamelingen........................... 6 1.2.1 Vereniging (unie) van twee verzamelingen.................

Nadere informatie

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2

Polynomen. + 5x + 5 \ 3 x 1 = S(x) 2x x. 3x x 3x 2 + 2 Lesbrief 3 Polynomen 1 Polynomen van één variabele Elke functie van de vorm P () = a n n + a n 1 n 1 + + a 1 + a 0, (a n 0), heet een polynoom of veelterm in de variabele. Het getal n heet de graad van

Nadere informatie

Uitgewerkte oefeningen

Uitgewerkte oefeningen Uitgewerkte oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x. Welke waarden voor x voldoen aan deze ongelijkheid? A) x B) x [ ] 4 C) x, [ ] D) x, Oplossing We werken de ongelijkheid uit: 4

Nadere informatie

Tentamen Ringen en Galoistheorie, , uur

Tentamen Ringen en Galoistheorie, , uur Tentamen Ringen en Galoistheorie, 30-6-2008, 14-17 uur Dit is een open boek tentamen. Dat wil zeggen, de dictaten mogen gebruikt worden maar geen andere zaken zoals aantekeningen, uitwerkingen, etc. Geef

Nadere informatie

5 Inleiding tot de groepentheorie

5 Inleiding tot de groepentheorie 5 Inleiding tot de groepentheorie Oefening 5.1. Stel de Cayleytabel op voor de groep van de symmetrieën van een vierkant. Bewijs dat deze groep de viergroep van Klein bezit als deelgroep van index 2. Oplossing

Nadere informatie

Uitwerkingen tentamen Algebra 3 8 juni 2017, 14:00 17:00

Uitwerkingen tentamen Algebra 3 8 juni 2017, 14:00 17:00 Uitwerkingen tentamen Algebra 3 8 juni 207, 4:00 7:00 Je mocht zoals gezegd niet zonder uitleg naar opgaven verwijzen. Sommige berekeningen zijn hier weggelaten. Die moest je op je tentamen wel laten zien.

Nadere informatie

Uitwerkingen toets 12 juni 2010

Uitwerkingen toets 12 juni 2010 Uitwerkingen toets 12 juni 2010 Opgave 1. Bekijk rijen a 1, a 2, a 3,... van positieve gehele getallen. Bepaal de kleinst mogelijke waarde van a 2010 als gegeven is: (i) a n < a n+1 voor alle n 1, (ii)

Nadere informatie

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008

Zomercursus Wiskunde. Katholieke Universiteit Leuven Groep Wetenschap & Technologie. September 2008 Katholieke Universiteit Leuven September 008 Algebraïsch rekenen (versie 7 juni 008) Inleiding In deze module worden een aantal basisrekentechnieken herhaald. De nadruk ligt vooral op het symbolisch rekenen.

Nadere informatie

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde.

1 Vlaamse Wiskunde Olympiade 1989-1990: Tweede Ronde. Vlaamse Wiskunde Olympiade 989-990: Tweede Ronde Vlaamse Wiskunde Olympiade vzw is een officiële foreign coordinator voor de welbekende AHSME-competitie (American High School Mathematics Examination -

Nadere informatie

Opgaven Eigenschappen van Getallen Security, 2018, Werkgroep.

Opgaven Eigenschappen van Getallen Security, 2018, Werkgroep. Opgaven Eigenschappen van Getallen Security, 2018, Werkgroep. Gebruik deze opgaven, naast die uit het boek, om de stof te oefenen op het werkcollege. Cijfer: Op een toets krijg je meestal zes tot acht

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2011-2012: eerste ronde 1.Xavieris51,Yvette39enZander60.Watishungemiddeldeleeftijd? (A) 45 (B) 49 (C) 50 (D) 51 (E) 55 2.Vantweenatuurlijkegetallenmennismevenennoneven.Welkvanvolgendegetallen

Nadere informatie

Groepen, ringen en velden

Groepen, ringen en velden Groepen, ringen en velden Groep Een groep G is een verzameling van elementen en een binaire operator met volgende eigenschappen: 1. closure (gesloten): als a en b tot G behoren, doet a b dat ook. 2. associativiteit:

Nadere informatie

(iii) Enkel deze bundel afgeven; geen bladen toevoegen, deze worden toch niet gelezen!

(iii) Enkel deze bundel afgeven; geen bladen toevoegen, deze worden toch niet gelezen! Examen Wiskundige Basistechniek, reeks A 12 oktober 2013, 13:30 uur Naam en Voornaam: Lees eerst dit: (i) Naam en voornaam hierboven invullen. (ii) Nietje niet losmaken. (iii) Enkel deze bundel afgeven;

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. 1 Vlaamse Wiskunde Olympiade 199 1994 : Eerste Ronde De eerste ronde bestaat uit 0 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 0 punten

Nadere informatie

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule

Heron driehoek. 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule Heron driehoek 1 Wat is een Heron driehoek? De naam Heron ( Heroon) is bekend van de formule = s(s a)(s b)(s c) met s = a + b + c 2 die gebruikt wordt om de oppervlakte van een driehoek te berekenen in

Nadere informatie

Getaltheorie I. c = c 1 = 1 c (1)

Getaltheorie I. c = c 1 = 1 c (1) Lesbrief 1 Getaltheorie I De getaltheorie houdt zich bezig met het onderzoek van eigenschappen van gehele getallen, en meer in het bijzonder, van natuurlijke getallen. In de getaltheorie is het gebruikelijk

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde Vlaamse Wiskunde Olympiade 2003-2004: tweede ronde De tweede ronde bestaat uit 30 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Uitwerkingen eerste serie inleveropgaven

Uitwerkingen eerste serie inleveropgaven Uitwerkingen eerste serie inleveropgaven (1) Gegeven het 4 4 grid bestaande uit de 16 punten (i, j) met i, j = 0,..., 3. Bepaal het aantal driehoeken dat je kunt vinden zodanig dat ieder hoekpunt samenvalt

Nadere informatie

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen

Hoofdstuk 3. Equivalentierelaties. 3.1 Modulo Rekenen Hoofdstuk 3 Equivalentierelaties SCHAUM 2.8: Equivalence Relations Twee belangrijke voorbeelden van equivalentierelaties in de informatica: resten (modulo rekenen) en cardinaliteit (aftelbaarheid). 3.1

Nadere informatie

Examen Wiskundige Basistechniek 15 oktober 2011

Examen Wiskundige Basistechniek 15 oktober 2011 Examen Wiskundige Basistechniek 15 oktober 2011 vraag 1: Gegeven is het complex getal ω = exp(i π 5 ). vraag 1.1: Als we in het complexe vlak het punt P met cartesiaanse coördinaten (x, y) vereenzelvigen

Nadere informatie

Getallen, 2e druk, extra opgaven

Getallen, 2e druk, extra opgaven Getallen, 2e druk, extra opgaven Frans Keune november 2010 De tweede druk bevat 74 nieuwe opgaven. De nummering van de opgaven van de eerste druk is in de tweede druk dezelfde: nieuwe opgaven staan in

Nadere informatie

1 Vlaamse Wiskunde Olympiade : tweede ronde

1 Vlaamse Wiskunde Olympiade : tweede ronde 1 Vlaamse Wiskunde Olympiade 005-006: tweede ronde Volgende benaderingen kunnen nuttig zijn bij het oplossen van sommige vragen 1,1 3 1,731 5,361 π 3,116 1 Als a 1 3 a 1 3 a m = a met a R + \{0, 1}, dan

Nadere informatie

OPLOSSINGEN VAN DE OEFENINGEN

OPLOSSINGEN VAN DE OEFENINGEN OPLOSSINGEN VAN DE OEFENINGEN 1.3.1. Er zijn 42 mogelijke vercijferingen. 2.3.4. De uitkomsten zijn 0, 4 en 4 1 = 4. 2.3.6. Omdat 10 = 1 in Z 9 vinden we dat x = c 0 +... + c m = c 0 +... + c m. Het getal

Nadere informatie

Tentamen Discrete Wiskunde

Tentamen Discrete Wiskunde Discrete Wiskunde (WB011C) 22 januari 2016 Tentamen Discrete Wiskunde Schrijf op ieder ingeleverd blad duidelijk leesbaar je naam en studentnummer. De opgaven 1 t/m 6 tellen alle even zwaar. Je hoeft slechts

Nadere informatie

Enkele valkuilen om te vermijden

Enkele valkuilen om te vermijden Enkele valkuilen om te vermijden Dit document is bedoeld om per onderwerp enkele nuttige strategieën voor opgaven te geven. Ook wordt er op een aantal veelgemaakte fouten gewezen. Het is géén volledige

Nadere informatie

1 Vlaamse Wiskunde Olympiade : eerste ronde

1 Vlaamse Wiskunde Olympiade : eerste ronde 1 Vlaamse Wiskunde Olympiade 2005-2006: eerste ronde 1 11 3 11 = () 11 2 3 () 11 5 6 () 11 1 12 11 1 4 11 1 6 2 ls a en b twee verschillende reële getallen verschillend van 0 zijn en 1 x + 1 b = 1, dan

Nadere informatie

Oefenopgaven Grondslagen van de Wiskunde A

Oefenopgaven Grondslagen van de Wiskunde A Oefenopgaven Grondslagen van de Wiskunde A Jaap van Oosten 2007-2008 1 Kardinaliteiten Opgave 1.1. Bewijs, dat R N = R. Opgave 1.2. Laat Cont de verzameling continue functies R R zijn. a) Laat zien dat

Nadere informatie

Hoofdstuk 1. Inleiding. Lichamen

Hoofdstuk 1. Inleiding. Lichamen Hoofdstuk 1 Lichamen Inleiding In Lineaire Algebra 1 en 2 heb je al kennis gemaakt met de twee belangrijkste begrippen uit de lineaire algebra: vectorruimte en lineaire afbeelding. In dit hoofdstuk gaan

Nadere informatie

De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: [ H =

De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: [ H = Oplossing examen TAI 11 juni 2008 Veel plezier :) Vraag 1 De pariteitstestmatrix van de (6,4) Hamming-code over GF(5) is de volgende: H = [ 1 0 1 2 3 ] 4 0 1 1 1 1 1 (a) Bepaal de bijhorende generatormatrix

Nadere informatie

Discrete Wiskunde, College 2. Han Hoogeveen, Utrecht University

Discrete Wiskunde, College 2. Han Hoogeveen, Utrecht University Discrete Wiskunde, College 2 Han Hoogeveen, Utrecht University Productregel Als gebeurtenis Z bestaat uit de combinatie van delen X en Y, waarbij iedere mogelijkheid voor X kan worden gecombineerd met

Nadere informatie

Discrete Wiskunde, College 7. Han Hoogeveen, Utrecht University

Discrete Wiskunde, College 7. Han Hoogeveen, Utrecht University Discrete Wiskunde, College 7 Han Hoogeveen, Utrecht University Sommatiefactor methode (niet in boek) Doel: oplossen van RBs als Basisidee: f n a n = g n a n 1 + c n ; 1 Vermenigvuldig de RB met een factor

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 2 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur

Tentamen Discrete Wiskunde 1 10 april 2012, 14:00 17:00 uur Tentamen Discrete Wiskunde 0 april 0, :00 7:00 uur Schrijf je naam op ieder blad dat je inlevert. Onderbouw je antwoorden, met een goede argumentatie zijn ook punten te verdienen. Veel succes! Opgave.

Nadere informatie

Ringen en Galoistheorie, 1e deel, 19 april 2012

Ringen en Galoistheorie, 1e deel, 19 april 2012 Ringen en Galoistheorie, 1e deel, 19 april 2012 Bij dit tentamen mag het dictaat niet gebruikt worden. Schrijf op elk vel je naam, studnr en naam practicumleider. Laat bij elke opgave zien hoe je aan je

Nadere informatie

RSA. F.A. Grootjen. 8 maart 2002

RSA. F.A. Grootjen. 8 maart 2002 RSA F.A. Grootjen 8 maart 2002 1 Delers Eerst wat terminologie over gehele getallen. We zeggen a deelt b (of a is een deler van b) als b = qa voor een of ander geheel getal q. In plaats van a deelt b schrijven

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste Ronde.

1 Vlaamse Wiskunde Olympiade : Eerste Ronde. Vlaamse Wiskunde Olympiade 995 996 : Eerste Ronde De eerste ronde bestaat uit 30 meerkeuzevragen, opgemaakt door de jury van VWO Het quoteringssysteem werkt als volgt : een deelnemer start met 30 punten

Nadere informatie

Combinatoriek groep 1 & 2: Recursie

Combinatoriek groep 1 & 2: Recursie Combinatoriek groep 1 & : Recursie Trainingsweek juni 008 Inleiding Bij een recursieve definitie van een rij wordt elke volgende term berekend uit de vorige. Een voorbeeld van zo n recursieve definitie

Nadere informatie

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties

Hoofdstuk 6. Congruentierekening. 6.1 Congruenties Hoofdstuk 6 Congruentierekening 6.1 Congruenties We hebben waarschijnlijk allemaal wel eens opgemerkt dat bij vermenigvuldigen van twee getallen de laatste cijfers als het ware meevermenigvuldigen. Stel

Nadere informatie

2E HUISWERKOPDRACHT CONTINUE WISKUNDE

2E HUISWERKOPDRACHT CONTINUE WISKUNDE 2E HUISWERKOPDRACHT CONTINUE WISKUNDE Inleverdatum maandag 8 oktober 2017 voor het college Niet losse velletjes aan elkaar vast. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven.

Nadere informatie

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback

IJkingstoets Wiskunde-Informatica-Fysica september 2018: algemene feedback IJkingstoets wiskunde-informatica-fysica september 8 - reeks - p. IJkingstoets Wiskunde-Informatica-Fysica september 8: algemene feedback Positionering ten opzichte van andere deelnemers In totaal namen

Nadere informatie

1E HUISWERKOPDRACHT CONTINUE WISKUNDE

1E HUISWERKOPDRACHT CONTINUE WISKUNDE E HUISWERKOPDRACHT CONTINUE WISKUNDE Uiterste inleverdatum dinsdag oktober, voor het begin van het college N.B. Je moet de hele uitwerking opschrijven en niet alleen het antwoord geven. Je moet het huiswerk

Nadere informatie

Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002

Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002 Opgaven Getaltheorie en Cryptografie (deel 1) Inleverdatum: 28 februari 2002 1. We vatten {0, 1} op als het lichaam F 2. Een schuifregisterrij is een rij {s n } n=0 in F 2 gegeven door r startwaarden s

Nadere informatie

RINGEN EN LICHAMEN. Aanvullende opgaven met uitwerkingen

RINGEN EN LICHAMEN. Aanvullende opgaven met uitwerkingen RINGEN EN LICHAMEN Aanvullende opgaven met uitwerkingen Hierna volgen een aantal aanvullende opgaven die gaan over kernbegrippen uit de eerste hoofdstukken van Ringen en Lichamen. Probeer deze opgaven

Nadere informatie

Het karakteristieke polynoom

Het karakteristieke polynoom Hoofdstuk 6 Het karakteristieke polynoom We herhalen eerst kort de definities van eigenwaarde en eigenvector, nu in een algemene vectorruimte Definitie 6 Een eigenvector voor een lineaire transformatie

Nadere informatie

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015

Je hebt twee uur de tijd voor het oplossen van de vraagstukken. µkw uitwerkingen. 12 juni 2015 Je hebt twee uur de tijd voor het oplossen van de vraagstukken. Elk vraagstuk is maximaal 10 punten waard. Begin elke opgave op een nieuw vel papier. µkw uitwerkingen 12 juni 2015 Vraagstuk 1. We kunnen

Nadere informatie

Pijlenklokken. 1 Inleiding

Pijlenklokken. 1 Inleiding Pijlenklokken 1 Inleiding In bovenstaande tekening zie je 1 rode punten. Er staan blauwe pijlen van elk rood punt naar een ander rood punt 4 plaatsen verder op de cirkel. Een dergelijke afbeelding noemen

Nadere informatie

1 Vlaamse Wiskunde Olympiade : Eerste ronde.

1 Vlaamse Wiskunde Olympiade : Eerste ronde. Vlaamse Wiskunde Olympiade 000-00: Eerste ronde De eerste ronde bestaat uit 0 meerkeuzevragen Het quoteringssysteem werkt als volgt: per goed antwoord krijgt de deelnemer 5 punten, een blanco antwoord

Nadere informatie

Inleiding tot de Problem Solving - deel 1: Combinatoriek en getaltheorie

Inleiding tot de Problem Solving - deel 1: Combinatoriek en getaltheorie Inleiding tot de Problem Solving - deel 1: Combinatoriek en getaltheorie Jan Vonk 1 oktober 2008 1 Combinatoriek Inleiding Een gebied dat vandaag de dag haast niet onderschat kan worden binnen de wiskunde

Nadere informatie

Over de construeerbaarheid van gehele hoeken

Over de construeerbaarheid van gehele hoeken Over de construeerbaarheid van gehele hoeken Dick Klingens maart 00. Inleiding In de getallentheorie worden algebraïsche getallen gedefinieerd via rationale veeltermen f van de n-de graad in één onbekende:

Nadere informatie

Tellen. K. P. Hart. Delft, Faculty EEMCS TU Delft. K. P. Hart Tellen

Tellen. K. P. Hart. Delft, Faculty EEMCS TU Delft. K. P. Hart Tellen Tellen Tá scéiĺın agam K. P. Hart Faculty EEMCS TU Delft Delft, 16-9-2015 Dingen om te tellen afbeeldingen injecties surjecties bijecties deelverzamelingen van diverse pluimage Wat notatie Afkorting: n

Nadere informatie

1 Junior Wiskunde Olympiade : eerste ronde

1 Junior Wiskunde Olympiade : eerste ronde 1 Junior Wiskunde Olympiade 2005-2006: eerste ronde 1 Vier van de volgende figuren zijn het beeld van minstens één andere figuur door een draaiing in het vlak Voor één figuur is dit niet het geval Welke?

Nadere informatie

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden

6.0 Voorkennis AD BC. Kruislings vermenigvuldigen: Voorbeeld: 50 10x. 50 10( x 1) Willem-Jan van der Zanden 6.0 Voorkennis Kruislings vermenigvuldigen: A C AD BC B D Voorbeeld: 50 0 x 50 0( x ) 50 0x 0 0x 60 x 6 6.0 Voorkennis Herhaling van rekenregels voor machten: p p q pq a pq a a a [] a [2] q a q p pq p

Nadere informatie

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr.

Voorbereiding toelatingsexamen arts/tandarts. Wiskunde: veeltermfuncties en berekening parameters, stelsels. 16 september dr. Voorbereiding toelatingsexamen arts/tandarts Wiskunde: veeltermfuncties en berekening parameters, stelsels 16 september 2017 dr. Brenda Casteleyn Met dank aan: Atheneum van Veurne, Leen Goyens (http://users.telenet.be/toelating)

Nadere informatie

Getaltheorie II. ax + by = c, a, b, c Z (1)

Getaltheorie II. ax + by = c, a, b, c Z (1) Lesbrief 2 Getaltheorie II 1 Lineaire vergelijkingen Een vergelijking van de vorm ax + by = c, a, b, c Z (1) heet een lineaire vergelijking. In de getaltheorie gaat het er slechts om gehele oplossingen

Nadere informatie

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback

IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback IJkingstoets burgerlijk ingenieur 30 juni 2014 - reeks 1 - p. 1 IJkingstoets burgerlijk ingenieur juni 2014: algemene feedback In totaal namen 716 studenten deel aan de ijkingstoets burgerlijk ingenieur

Nadere informatie

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback

Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op 30 juni 2014: algemene feedback IJkingstoets juni 4 - reeks - p. / Ijkingstoets industrieel ingenieur aangeboden door UGent en VUB op juni 4: algemene feedback In totaal namen studenten deel aan deze ijkingstoets industrieel ingenieur

Nadere informatie

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12

1 Delers 1. 3 Grootste gemene deler en kleinste gemene veelvoud 12 Katern 2 Getaltheorie Inhoudsopgave 1 Delers 1 2 Deelbaarheid door 2, 3, 5, 9 en 11 6 3 Grootste gemene deler en kleinste gemene veelvoud 12 1 Delers In Katern 1 heb je geleerd wat een deler van een getal

Nadere informatie

Actief gedeelte - Maken van oefeningen

Actief gedeelte - Maken van oefeningen Actief gedeelte - Maken van oefeningen Algebra Oefening 1 Gegeven is de ongelijkheid: 4 x 2. Welke waarden voor x voldoen aan deze ongelijkheid? (A) x 2 (B) x 2 [ ] 4 (C) x, 2 [ ] 2 (D) x, 2 Oefening 2

Nadere informatie

1 Junior Wiskunde Olympiade : tweede ronde

1 Junior Wiskunde Olympiade : tweede ronde Junior Wiskunde Olympiade 008-009: tweede ronde ( 7) = (A) 7 (B) 7 (C) 7 of + 7 (D) 7 (E) onbepaald Beschouw de rij opeenvolgende natuurlijke getallen beginnend met en eindigend met Wat is het middelste

Nadere informatie

extra sommen bij Numerieke lineaire algebra

extra sommen bij Numerieke lineaire algebra extra sommen bij Numerieke lineaire algebra 31 oktober 2012 1. Stel, we willen met een rekenapparaat (dat arithmetische bewerkingen uitvoert met een relatieve nauwkeurigheid ξ, ξ ξ) voor twee getallen

Nadere informatie

Bijzondere kettingbreuken

Bijzondere kettingbreuken Hoofdstuk 15 Bijzondere kettingbreuken 15.1 Kwadratische getallen In het vorige hoofdstuk hebben we gezien dat 2 = 1, 2, 2, 2, 2, 2, 2,.... Men kan zich afvragen waarom we vanaf zeker moment alleen maar

Nadere informatie

Algebra groep 2 & 3: Standaardtechnieken kwadratische functies

Algebra groep 2 & 3: Standaardtechnieken kwadratische functies Algebra groep 2 & 3: Standaardtechnieken kwadratische functies Trainingsweek juni 2008 Kwadraat afsplitsen Een kwadratische functie oftewel tweedegraads polynoom) px) = ax 2 + bx + c a 0) kan in verschillende

Nadere informatie

Deel 2. Basiskennis wiskunde

Deel 2. Basiskennis wiskunde Deel 2. Basiskennis wiskunde Vraag 26 Definieer de functie f : R R : 7 cos(2 ). Bepaal de afgeleide van de functie f in het punt 2π/2. (A) f 0 ( 2π/2) = π (B) f 0 ( 2π/2) = 2π (C) f 0 ( 2π/2) = 2π (D)

Nadere informatie

3.1 Kwadratische functies[1]

3.1 Kwadratische functies[1] 3.1 Kwadratische functies[1] Voorbeeld 1: y = x 2-6 Invullen van x = 2 geeft y = 2 2-6 = -2 In dit voorbeeld is: 2 het origineel; -2 het beeld (of de functiewaarde) y = x 2-6 de formule. Een functie voegt

Nadere informatie

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2

Oefening 1. Welke van de volgende functies is injectief? (E) f : N N N : (n, m) 7 2m+n. m n. Oefening 2 IJkingstoets 30 juni 04 - reeks - p. /5 Oefening Een functie f : A B : 7 f () van verzameling A naar verzameling B is injectief als voor alle, A geldt: als 6=, dan is f () 6= f (). Welke van de volgende

Nadere informatie

Diophantische vergelijkingen

Diophantische vergelijkingen Diophantische vergelijkingen 1 Wat zijn Diophantische vergelijkingen? Een Diophantische vergelijking is een veeltermvergelijking waarbij zowel de coëfficiënten als de oplossingen gehele getallen moeten

Nadere informatie

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn :

2. Ga voor volgende relaties na of het al dan niet functies, afbeeldingen, bijecties, injecties, surjecties zijn : HOOFDSTUK. VERZAMELINGEN, RELATIES EN FUNCTIES Opgaven verzamelingen, relaties en functies. Toon aan : a) (A B) C = A (B C) b) A (B C) = (A B) (A C) c) (A B) c = A c B c d) A B B c A c. Ga voor volgende

Nadere informatie

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten

Hoofdstuk 12. Sommen van kwadraten. 12.1 Sommen van twee kwadraten Hoofdstuk 12 Sommen van kwadraten 12.1 Sommen van twee kwadraten In Hoofdstuk 11 hebben we gezien dat als p een oneven priemdeler van a 2 + b 2 is, en p deelt niet zowel a als b, dan is p gelijk aan 1

Nadere informatie